1
AIPMT 2008
MCQ (Single Correct Answer)
+4
-1
The bromination of acetone that occurs in acid solution is represented by this equation.
CH3COCH3(aq) + Br2(aq)  $$ \to $$
     CH3COCH2Br(aq) + H+(aq) + Br$$-$$(aq)
These kinetic data were obtained for given reaction concentrations.
Initial concentrations, M
[CH3COCH3 [Br2] [H+]
0.30 0.05 0.05
0.30 0.10 0.05
0.30 0.10 0.10
0.40 0.05 0.20

Initial rate, disappearance of Br2, Ms$$-$$1
5.7$$ \times $$10$$-$$5
5.7$$ \times $$10$$-$$5
1.2$$ \times $$10$$-$$4
3.1$$ \times $$10$$-$$4

Based on these data, the rate equation is
A
Rate = k[CH3COCH3][Br2][H+]2
B
Rate = k[CH3COCH3][Br2][H+]
C
Rate = k[CH3COCH3][H+]
D
Rate = k[CH3COCH3][Br2]
2
AIPMT 2007
MCQ (Single Correct Answer)
+4
-1
If 60% of a first order reaction was completed in 60 minutes, 50% of the same reaction would be completed in approximately
(log 4 = 0.60, log 5 = 0.69)
A
45 minutes
B
60 minutes
C
40 minutes
D
50 minutes
3
AIPMT 2007
MCQ (Single Correct Answer)
+4
-1
In a first-order reaction A $$ \to $$ B, if k is rate constant and initial concentration of the reactant A is 0.5 M, then the half-life is
A
$${{\log 2} \over k}$$
B
$${{\log 2} \over {k\sqrt {0.5} }}$$
C
$${{\ln 2} \over k}$$
D
$${{0.693} \over {0.5k}}$$
4
AIPMT 2007
MCQ (Single Correct Answer)
+4
-1
The reaction of hydrogen and iodine monochloride is given as :
H2(g) + 2ICl(g) $$ \to $$ 2HCl(g) + I2(g)
This reaction is of first order with respect to H2(g) and ICl(g),
following mechanisms were proposed.

Mechanism A :
     H2(g) + 2ICl(g) $$ \to $$ 2HCl(g) + I2(g)
Mechanism B :
     H2(g) + ICl(g) $$ \to $$ HCl(g) + HI(g) ; slow
     HI(g) + ICl(g) $$ \to $$ HCl(g) + I2(g) ; fast

Which of the above mechanism(s) can be consistent with the given information about the reaction?
A
A and B both
B
Neither A nor B
C
A only
D
B only
NEET Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12