If the half-life ( $t_{1 / 2}$ ) for a first order reaction is 1 minute, then the time required for $99.9 \%$ completion of the reaction is closest to :
Following data is for a reaction between reactants A and B :
Rate $$\mathrm{mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$ |
$$\mathrm{[A]}$$ | $$\mathrm{[B]}$$ |
---|---|---|
$$ 2 \times 10^{-3} $$ |
0.1 M | 0.1 M |
$$ 4 \times 10^{-3} $$ |
0.2 M | 0.1 M |
$$ 1.6 \times 10^{-2} $$ |
0.2 M | 0.2 M |
$$ \text { The order of the reaction with respect to } \mathrm{A} \text { and } \mathrm{B} \text {, respectively, are } $$
Which of the following plot represents the variation of $$\ln \mathrm{k}$$ versus $$\frac{1}{\mathrm{~T}}$$ in accordance with Arrhenius equation?
Rate constants of a reaction at $$500 \mathrm{~K}$$ and $$700 \mathrm{~K}$$ are $$0.04 \mathrm{~s}^{-1}$$ and $$0.14 \mathrm{~s}^{-1}$$, respectively; then, activation energy of the reaction is :
(Given: $$\log 3.5=0.5441, \mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$)