1
GATE CSE 2004
+1
-0.3
Consider the binary relation: $$S = \left\{ {\left( {x,y} \right)|y = x + 1\,\,and\,\,x,y \in \left\{ {0,1,2,...} \right\}} \right\}$$

The reflexive transitive closure of $$S$$ is

A
$$\left\{ {\left( {x,y} \right)|y > x\,\,\,and\,\,\,x,y \in \left\{ {0,1,2,.....} \right\}} \right\}$$
B
$$\left\{ {\left( {x,y} \right)|y \ge x\,\,\,and\,\,\,x,y \in \left\{ {0,1,2,.....} \right\}} \right\}$$
C
$$\left\{ {\left( {x,y} \right)|y < x\,\,\,and\,\,\,x,y \in \left\{ {0,1,2,.....} \right\}} \right\}$$
D
$$\left\{ {\left( {x,y} \right)|y \le x\,\,\,and\,\,\,x,y \in \left\{ {0,1,2,.....} \right\}} \right\}$$
2
GATE CSE 2004
+1
-0.3
The number of different $$n$$ $$x$$ $$n$$ symmetric matrices with each elements being either $$0$$ or $$1$$ is (Note: power ($$2,$$ $$x$$) is same as $${2^x}$$)
A
power $$(2, n)$$
B
power $$\left( {2,\,{n^2}} \right)$$
C
$$\left( {2,\left( {{n^2} + n} \right)/2} \right)$$
D
power $$\left( {2,\left( {{n^2} - n} \right)/2} \right)$$
3
GATE CSE 2004
+1
-0.3
Let $${R_1}$$ be a relation from $$A = \left\{ {1,3,5,7} \right\}$$ to $$B = \left\{ {2,4,6,8} \right\}$$ and $${R_2}$$ be another relation from $$B$$ to $$C$$ $$= \left\{ {1,2,3,4} \right\}$$ as defined below:

i) An element $$x$$ in $$A$$ is related to an element $$y$$ in $$B$$ (under $${R_1}$$) if $$x + y$$ is divisible by $$3$$.
ii) An element EExEE in $$B$$ is related to an elements $$y$$ in $$C$$ (under $${R_2}$$) if $$x + y$$ is even but not divisible by $$3$$.

Which is the composite relation $$R1R2$$ from $$A$$ to $$C$$?

A
$${R_1}\,{R_2}\, = \,\left\{ {\left( {1,2} \right),\,\left( {1,4} \right),\,\left( {3,3} \right),\,\left( {5,4} \right),\,\left( {7,3} \right)} \right\}$$
B
$${R_1}\,{R_2}\, = \,\left\{ {\left( {1,2} \right),\,\left( {1,3} \right),\,\left( {3,2} \right),\,\left( {5,2} \right),\,\left( {7,3} \right)} \right\}$$
C
$${R_1}\,{R_2}\, = \,\left\{ {\left( {1,2} \right),\,\left( {3,2} \right),\,\left( {3,4} \right),\,\left( {5,4} \right),\,\left( {7,2} \right)} \right\}$$
D
$${R_1}\,{R_2}\, = \,\left\{ {\left( {3,2} \right),\,\left( {3,4} \right),\,\left( {5,1} \right),\,\left( {5,3} \right),\,\left( {7,1} \right)} \right\}$$
4
GATE CSE 2001
+1
-0.3
Consider the following relations:
$${R_1}\,\,\left( {a,\,\,b} \right)\,\,\,iff\,\,\left( {a + b} \right)$$ is even over the set of integers
$${R_2}\,\,\left( {a,\,\,b} \right)\,\,\,iff\,\,\left( {a + b} \right)$$ is odd over the set of integers
$${R_3}\,\,\left( {a,\,\,b} \right)\,\,\,iff\,\,a.b > 0$$ over the set of non-zero rational numbers
$${R_4}\,\,\left( {a,\,\,b} \right)\,\,\,iff\,\,\left| {a - b} \right| \le 2$$ over the set of natural numbers

Which of the following statements is correct?

A
$${R_1}$$ and $${R_2}$$ are equivalence relations, $${R_3}$$ and $${R_4}$$ are not
B
$${R_1}$$ and $${R_3}$$ are equivalence relations, $${R_2}$$ and $${R_4}$$ are not
C
$${R_1}$$ and $${R_4}$$ are equivalence relations, $${R_2}$$ $${R_3}$$ are not
D
$${R_1}$$, $${R_2}$$, $${R_3}$$ and $${R_4}$$ are all equivalence relations
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination