1
GATE EE 2002
MCQ (Single Correct Answer)
+2
-0.6
A generator is connected to a transformer which feeds another transformer through a short feeder. The zero sequence impedance values are expressed in pu on a common base and are indicated in figure. The Thevenin equivalent zero sequence impedance at point B is GATE EE 2002 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 30 English
A
0.8 + j0.6
B
0.75 + j0.22
C
0.75 + j0.25
D
1.5 + j0.25
2
GATE EE 2002
Subjective
+5
-0
A synchronous generator is to be connected to an infinite bus through a transmission line of reactance X = 0.2 pu, as shown in figure the generator data is as follows:

X1 = 0.1 pu, E1 = 1.0 pu, H = 5 MJ/MVA, mechanical power Pm = 0.0 pu, $$\omega $$B = 2 $$\pi \times $$50 rad/sec. All quantities are expressed on a common base.

The generator is initially running on open circuit with the frequency of the open circuit voltage slightly higher than that of the infinite bus. If at the instant of switch closure $$\delta = 0$$ and $$\omega = {{d\delta } \over {dt}} = {\omega _{init}},$$ compute the maximum value of $${\omega _{init}}$$ so that the generator pulls into synchronism.

$$\int {\left( {{{2H} \over {{\omega _B}}}} \right)\omega d\omega + {P_e}d\delta = 0} $$

GATE EE 2002 Power System Analysis - Power System Stability Question 5 English
3
GATE EE 2002
MCQ (Single Correct Answer)
+2
-0.6
A transmission line has a total series reactance of 0.2 pu. Reactive power compensation is applied at the midpoint of the line and it is controlled such that the midpoint voltage of the transmission line is always maintained at 0.98 pu. If voltage at both ends of the line are maintained at 1.0 pu, then the steady state power transfer limit of the transmission line is
A
9.8 pu
B
4.9 pu
C
19.6 pu
D
5 pu
4
GATE EE 2002
Subjective
+5
-0
A long lossless transmission line has a unity power factor (UPF) load at the receiving end and an ac voltage source at the sending end. The parameters of the transmission line are as follows:
Characteristic impedance $${Z_c} = 400\Omega ,\,\,$$, propagation constant $$\,\beta = 1.2 \times {10^{ - 3}}\,\,rad/km,\,\,$$ and length $$\,l = 100\,km.\,\,$$ The equation relating sending and receiving end questions is $${V_s} = {V_r}\,\cosh \,\,\left( {\beta l} \right) + j\,Z{}_c\,\,\sinh \left( {\beta l} \right){{\rm I}_R}$$ Complete the maximum power that can be transferred to the UPF load at the receiving end if $$\left| {{V_s}} \right| = 230\,\,kV.\,\,$$ GATE EE 2002 Power System Analysis - Parameters and Performance of Transmission Lines Question 9 English
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12