1
GATE EE 2002
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of the system described by $${{{d^2}y} \over {d{t^2}}} + {{dy} \over {dt}} = {{du} \over {dt}} + 2u$$ with $$u$$ as input and $$y$$ as output is
A
$${{\left( {s + 2} \right)} \over {\left( {{s^2} + s} \right)}}$$
B
$${{\left( {s + 1} \right)} \over {\left( {{s^2} + s} \right)}}$$
C
$${2 \over {\left( {{s^2} + s} \right)}}$$
D
$${{2s} \over {\left( {{s^2} + s} \right)}}$$
2
GATE EE 2002
Subjective
+5
-0
Obtain a state variable representation of the system governed by the differential equation: $${{{d^2}y} \over {d{t^2}}} + {{dy} \over {dt}} - 2y = u\left( t \right){e^{ - t}},\,\,\,$$ with the choice of state variables as $${x_1} = y,$$ $${x_2} = \left( {{{dy} \over {dt}} - y} \right){e^t}.$$ Aso find $${x_2}\left( t \right),$$ given that $$u(t)$$ is a unit step function and $${x_2}\left( 0 \right) = 0.$$
3
GATE EE 2002
MCQ (Single Correct Answer)
+2
-0.6
For the system $$\mathop X\limits^ \bullet = \left[ {\matrix{ 2 & 0 \cr 0 & 4 \cr } } \right]X + \left[ {\matrix{ 1 \cr 1 \cr } } \right]u;\,\,\,y = \left[ {\matrix{ 4 & 0 \cr } } \right]X,\,$$ with u as unit impulse and with zero initial state, the output, $$y$$, becomes
A
$$2{e^{2t}}$$
B
$$4{e^{2t}}$$
C
$$2{e^{4t}}$$
D
$$4{e^{4t}}$$
4
GATE EE 2002
MCQ (Single Correct Answer)
+2
-0.6
For the system $$X = \left[ {\matrix{ 2 & 3 \cr 0 & 5 \cr } } \right]X + \left[ {\matrix{ 1 \cr 0 \cr } } \right]u,$$ Which of the following statement is true?
A
The system is controllable but unstable
B
The system is uncontrollable and unstable
C
The system is controllable and stable
D
The system is uncontrollable and stable
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12