1
GATE EE 2002
Subjective
+5
-0
In a single phase $$3$$ winding transformer the turns ratio for primary: secondary: tertiary windings is $$20:4:1.$$ With the lagging currents of $$50A$$ at a power factor of $$0.6$$ in the tertiary winding find the primary current and power factor.
2
GATE EE 2002
Subjective
+5
-0
A single phase $$6300$$ $$kVA,$$ $$50$$ $$Hz,$$ $$3300V/400V$$ distribution transformer is connected between two $$50$$ $$Hz$$ supply systems, $$A$$ and $$B$$ as shown in Fig. The transformer has $$12$$ and $$99$$ turns in the low and high voltage windings respectively. The magnetizing reactance of the transformer referred to the high voltage side is $$500\Omega .$$ The leakage reactance of the high and low voltage windings are $$1.0\Omega $$ and $$0.012\Omega $$ respectively. Neglect the winding resistance and core losses of the transformer. The Thevenin voltage of system $$A$$ is $$3300V$$ while that of system $$B$$ is $$400V.$$ the short circuit reactance of systems $$A$$ and $$B$$ are $$0.5\Omega $$ and $$0.010\Omega $$ respectively. If no power is transferred between $$A$$ and $$B,$$ so that the two system voltages are in phase, find the magnetizing ampere turns of the transformer. GATE EE 2002 Electrical Machines - Transformers Question 8 English
3
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
Given a vector field $$\overrightarrow F ,$$ the divergence theorem states that
A
$$\oint {\overrightarrow F .d\overrightarrow s = \int\limits_v {\Delta \,\,.\,\,\overrightarrow F \,dv} } $$
B
$$\int\limits_s {\overrightarrow F .\,\,d} \overrightarrow s = \int\limits_v {\Delta \times \overrightarrow F \,\,dV} $$
C
$$\int\limits_s {\overrightarrow F \times \,d} \overrightarrow s = \int\limits_v {\Delta \,\,.\,\,\overrightarrow F \,\,dV} $$
D
$$\int\limits_s {\overrightarrow F \times \,d} \overrightarrow s = \int\limits_v {\Delta \,\, \times \overrightarrow F \,\,dV} $$
4
GATE EE 2002
Subjective
+5
-0
The magnetic vector potential in a region is defined by $$\overrightarrow A = {e^{ - y}}\sin \left( x \right){\widehat a_z}.$$ An infinitely long conductor, having a cross section area, $$a=5$$ $$m{m^2}$$ and carrying a $$dc$$ current, $${\rm I} = 5\,A$$ in the $$Y$$ direction, passes through this region as shown in Fig. Determine the expression for $$(a)$$ $$\overrightarrow B $$ and $$(b)$$ force density $$\overrightarrow f $$ exerted on the conductor GATE EE 2002 Electromagnetic Fields - Magnetostatics Question 3 English
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12