GATE EE

For this circuit, the value of $${{{R_B}} \over R}$$ is

Which one of the following is TRUE?
The frequency range in which the phase (lead) introduce by the compensator reaches the maximum is
$$\eqalign{ & \left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet \left( t \right)} \cr {\mathop {{x_2}}\limits^ \bullet \left( t \right)} \cr } } \right] = \left[ {\matrix{ 0 & 1 \cr 0 & { - 2} \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u\left( t \right) \cr & y\left( t \right) = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] \cr} $$
If $$u(t)$$ is a unit step input and $$\left[ {\matrix{ {{x_1}\left( 0 \right)} \cr {{x_2}\left( 0 \right)} \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr } } \right],$$ the value of output $$y(t)$$ at $$t=1$$ sec (rounded off to three decimal places) is _____________.


The minimum number if clock cycles after which the output $$Z$$ would again become zero is _____________.








The value of $$(x+y)$$ is _________.
$$f\left( x \right) = \left\{ {\matrix{ {1 - x,} & {x \le 0} \cr {{x^{2,}}} & {x > 0} \cr } } \right..$$
Consider the composition of $$f$$ and $$g,$$ i.e., $$\left( {f \circ g} \right)\left( x \right) = f\left( {g\left( x \right)} \right).$$ The number of discontinuities in $$\left( {f \circ g} \right)\left( x \right)$$ present in the interval $$\left( { - \infty ,0} \right)$$ is


The $$RMS$$ value of the current through diode $${D_3}$$ in amperes is ________________.




For the given circuit, $${Y_{bus}}$$ and $${Z_{bus}}$$ are bus admittance matrix and bus impedance matrix, respectively, each of size $$2\, \times \,2$$. Which one of the following statements is true?

Impedance $$Z = 100\angle {80^ \circ }$$ and reactance $$\,X = 3300\Omega .$$ The magnitude of the characteristic impedance of the transmission line, in $$\Omega ,$$ is ________. (Give the answer up to one decimal place.)


