1
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
Given a vector field $$\overrightarrow F ,$$ the divergence theorem states that
A
$$\oint {\overrightarrow F .d\overrightarrow s = \int\limits_v {\Delta \,\,.\,\,\overrightarrow F \,dv} } $$
B
$$\int\limits_s {\overrightarrow F .\,\,d} \overrightarrow s = \int\limits_v {\Delta \times \overrightarrow F \,\,dV} $$
C
$$\int\limits_s {\overrightarrow F \times \,d} \overrightarrow s = \int\limits_v {\Delta \,\,.\,\,\overrightarrow F \,\,dV} $$
D
$$\int\limits_s {\overrightarrow F \times \,d} \overrightarrow s = \int\limits_v {\Delta \,\, \times \overrightarrow F \,\,dV} $$
2
GATE EE 2002
Subjective
+5
-0
The magnetic vector potential in a region is defined by $$\overrightarrow A = {e^{ - y}}\sin \left( x \right){\widehat a_z}.$$ An infinitely long conductor, having a cross section area, $$a=5$$ $$m{m^2}$$ and carrying a $$dc$$ current, $${\rm I} = 5\,A$$ in the $$Y$$ direction, passes through this region as shown in Fig. Determine the expression for $$(a)$$ $$\overrightarrow B $$ and $$(b)$$ force density $$\overrightarrow f $$ exerted on the conductor GATE EE 2002 Electromagnetic Fields - Magnetostatics Question 6 English
3
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
Let $$Y(s)$$ be the Laplace transform of function $$y(t),$$ then the final value of the function is __________.
A
$$\mathop {Lim}\limits_{s \to 0} \,\,Y\left( s \right)$$
B
$$\mathop {Lim}\limits_{s \to \infty } \,\,Y\left( s \right)$$
C
$$\mathop {Lim}\limits_{s \to 0} \,s\,\,Y\left( s \right)$$
D
$$\mathop {Lim}\limits_{s \to \infty } \,s\,\,Y\left( s \right)$$
4
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
Given a vector field $${\overrightarrow F ,}$$ the divergence theorem states that
A
$$\int\limits_s {\overrightarrow F .d\overrightarrow s = \int\limits_v \nabla .\overrightarrow F \,dv} $$
B
$$\int\limits_s {\overrightarrow F .d\overrightarrow s = \int\limits_v \nabla \times \overrightarrow F \,dv} $$
C
$$\int\limits_s {\overrightarrow F \times d\overrightarrow s = \int\limits_v \nabla .\overrightarrow F \,dv} $$
D
$$\int\limits_s {\overrightarrow F \times d\overrightarrow s = \int\limits_v \nabla \times \overrightarrow F \,dv} $$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12