1
GATE ECE 2023
MCQ (Single Correct Answer)
+2
-0.67

Let an input $$x[n]$$ having discrete time Fourier transform $$x({e^{j\Omega }}) = 1 - {e^{ - j\Omega }} + 2{e^{ - 3j\Omega }}$$ be passed through an LTI system. The frequency response of the LTI system is $$H({e^{j\Omega }}) = 1 - {1 \over 2}{e^{ - j2\Omega }}$$. The output $$y[n]$$ of the system is

A
$$\delta [n] + \delta [n - 1] - {1 \over 2}\delta [n - 2] - {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
B
$$\delta [n] - \delta [n - 1] - {1 \over 2}\delta [n - 2] - {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
C
$$\delta [n] - \delta [n - 1] - {1 \over 2}\delta [n - 2] + {5 \over 2}\delta [n - 3] - \delta [n - 5]$$
D
$$\delta [n] + \delta [n - 1] + {1 \over 2}\delta [n - 2] + {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
2
GATE ECE 2023
MCQ (Single Correct Answer)
+2
-0.67

Let $$x(t) = 100\cos (10.5Wt)$$ be passed through an LTI system having impulse response $$h(t) = \pi {\left( {{{\sin Wt} \over {\pi t}}} \right)^2}\cos 10Wt$$. The output of the system is

A
$$\left( {{{15W} \over 4}} \right)\cos (10.5Wt)$$
B
$$\left( {{{15W} \over 2}} \right)\cos (10.5Wt)$$
C
$$\left( {{{15W} \over 8}} \right)\cos (10.5Wt)$$
D
$$(15W)\cos(10.5Wt)$$
3
GATE ECE 2023
Numerical
+2
-0.67

Let $$\mathrm{x_1(t)=u(t+1.5)-u(t-1.5)}$$ and $$\mathrm{x_2(t)}$$ is shown in the figure below. For $$\mathrm{y(t)=x_1(t)~*~x_2(t)}$$, the $$\int_{ - \infty }^\infty {y(t)dt} $$ is ____________ (rounded off to the nearest integer).

GATE ECE 2023 Signals and Systems - Representation of Continuous Time Signal Fourier Series Question 2 English

Your input ____
4
GATE ECE 2023
MCQ (Single Correct Answer)
+1
-0.33

"I cannot support this proposal. My __________ will not permit it."

A
conscious
B
consensus
C
conscience
D
consent
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12