1
GATE ECE 2023
MCQ (Single Correct Answer)
+2
-0.67

Let an input $$x[n]$$ having discrete time Fourier transform $$x({e^{j\Omega }}) = 1 - {e^{ - j\Omega }} + 2{e^{ - 3j\Omega }}$$ be passed through an LTI system. The frequency response of the LTI system is $$H({e^{j\Omega }}) = 1 - {1 \over 2}{e^{ - j2\Omega }}$$. The output $$y[n]$$ of the system is

A
$$\delta [n] + \delta [n - 1] - {1 \over 2}\delta [n - 2] - {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
B
$$\delta [n] - \delta [n - 1] - {1 \over 2}\delta [n - 2] - {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
C
$$\delta [n] - \delta [n - 1] - {1 \over 2}\delta [n - 2] + {5 \over 2}\delta [n - 3] - \delta [n - 5]$$
D
$$\delta [n] + \delta [n - 1] + {1 \over 2}\delta [n - 2] + {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
2
GATE ECE 2023
MCQ (Single Correct Answer)
+2
-0.67

Let $$x(t) = 100\cos (10.5Wt)$$ be passed through an LTI system having impulse response $$h(t) = \pi {\left( {{{\sin Wt} \over {\pi t}}} \right)^2}\cos 10Wt$$. The output of the system is

A
$$\left( {{{15W} \over 4}} \right)\cos (10.5Wt)$$
B
$$\left( {{{15W} \over 2}} \right)\cos (10.5Wt)$$
C
$$\left( {{{15W} \over 8}} \right)\cos (10.5Wt)$$
D
$$(15W)\cos(10.5Wt)$$
3
GATE ECE 2023
Numerical
+2
-0

Let $$\mathrm{x_1(t)=u(t+1.5)-u(t-1.5)}$$ and $$\mathrm{x_2(t)}$$ is shown in the figure below. For $$\mathrm{y(t)=x_1(t)~*~x_2(t)}$$, the $$\int_{ - \infty }^\infty {y(t)dt} $$ is ____________ (rounded off to the nearest integer).

GATE ECE 2023 Signals and Systems - Representation of Continuous Time Signal Fourier Series Question 3 English

Your input ____
4
GATE ECE 2023
MCQ (Single Correct Answer)
+1
-0.33

"I cannot support this proposal. My __________ will not permit it."

A
conscious
B
consensus
C
conscience
D
consent
EXAM MAP