1
GATE ECE 2023
MCQ (Single Correct Answer)
+1
-0.33

Consider a system with input $$x(t)$$ and output $$y(t) = x({e^t})$$. The system is

A
Causal and time invariant.
B
Non-causal and time varying.
C
Causal and time varying.
D
Non-causal and time invariant.
2
GATE ECE 2023
MCQ (Single Correct Answer)
+1
-0.33

Let $$m(t)$$ be a strictly band-limited signal with bandwidth B and energy E. Assuming $${\omega _0} = 10B$$, the energy in the signal $$m(t)\cos {\omega _0}t$$ is

A
$${E \over 4}$$
B
$${E \over 2}$$
C
E
D
2E
3
GATE ECE 2023
MCQ (Single Correct Answer)
+1
-0.33

The Fourier transform $$x(\omega )$$ of $$x(t) = {e^{ - {t^2}}}$$ is

Note : $$\int\limits_{ - \infty }^\infty {{e^{ - {y^2}}}dy = \sqrt \pi } $$

A
$$\sqrt \pi {e^{{{{\omega ^2}} \over 2}}}$$
B
$${{{e^{ - {{{\omega ^2}} \over 4}}}} \over {2\sqrt \pi }}$$
C
$$\sqrt \pi {e^{ - {{{\omega ^2}} \over 4}}}$$
D
$$\sqrt \pi {e^{ - {{{\omega ^2}} \over 2}}}$$
4
GATE ECE 2023
MCQ (Single Correct Answer)
+1
-0.33

In the table shown below, match the signal type with its spectral characteristics.

Signal type Spectral characteristics
(i) Continuous, aperiodic (a) Continuous, aperiodic
(ii) Continuous, periodic (b) Continuous, periodic
(iii) Discrete, aperiodic (c) Discrete, aperiodic
(iv) Discrete, periodic (d) Discrete, periodic

A
$$(i)\to(a),(ii)\to(b),(iii)\to(c),(iv)\to(d)$$
B
$$(i)\to(a),(ii)\to(c),(iii)\to(b),(iv)\to(d)$$
C
$$(i)\to(d),(ii)\to(b),(iii)\to(c),(iv)\to(a)$$
D
$$(i)\to(a),(ii)\to(c),(iii)\to(d),(iv)\to(b)$$
EXAM MAP