1
GATE ECE 1993
MCQ (Single Correct Answer)
+2
-0.6
If $$F\left( s \right) = L\left[ {f\left( t \right)} \right] = {K \over {\left( {s + 1} \right)\,\left( {{s^2} + 4} \right)}}$$ then $$\matrix{ {Lim\,f\,\left( t \right)} \cr {t \to \infty } \cr } $$ is given by
A
K/4
B
zero
C
infinite
D
undefined
2
GATE ECE 1993
Fill in the Blanks
+2
-0
The Laplace transform of the periodioc function f(t) describe4d by the curve below, i.e., $$f\left( t \right) = \left\{ {\matrix{ {\sin \,t\,\,\,if\,\left( {2n - 1} \right)\pi \le t \le 2n\pi } \cr {0\,\,\,\,\,\,\,\,otherwise} \cr } } \right.$$
is _________. (fill in the blank), n is an integer. GATE ECE 1993 Signals and Systems - Continuous Time Signal Laplace Transform Question 20 English
3
GATE ECE 1993
Subjective
+5
-0
Consider the following interconnection of the three LTI systems (Fig.1). $${h_1}(t)$$ , $${h_2}(t)$$ and $${h_3}(t)$$ are the impulse responses of these three LTI systems with $${H_1}(\omega )$$, $${H_2}(\omega )$$, and $${H_3}(\omega )$$ as their respective Fourier transforms. Given that $${h_1}\,(t)\, = \,{d \over {dt}}\left[ {{{\sin ({\omega _0}t)} \over {2\,\pi \,t}}} \right],{H_2}(\omega ) = \exp \left( {{{ - j2\pi \omega } \over {{\omega _0}}}} \right)$$
$${h_3}\,(t)\, = u(t)\,and\,x(t)\, = \,\sin \,2\,{\omega _0}t\, + \,\cos \,({\omega _0}t/2),$$ find the output y(t). GATE ECE 1993 Signals and Systems - Continuous Time Linear Invariant System Question 4 English
4
GATE ECE 1993
Subjective
+2
-0
Sketch the waveform (with properly marked axes) at the output of a matched filter matched for a signal s(t), of duration T, given by $$s(t) = \left\{ {\matrix{ {A\,\,\,\,for} & {0 \le t < {2 \over 3}T} \cr {0\,\,\,\,\,\,for} & {{2 \over 3}T \le t < T} \cr } } \right.$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12