NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

AIPMT 2004

MCQ (Single Correct Answer)
The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In$$-$$) forms of the indicator by the expression
A
$$\log {{\left[ {I{n^ - }} \right]} \over {\left[ {HIn} \right]}} = p{K_{In}} - pH$$
B
$$\log {{\left[ {HIn} \right]} \over {\left[ {I{n^ - }} \right]}} = p{K_{In}} - pH$$
C
$$\log {{\left[ {HIn} \right]} \over {\left[ {I{n^ - }} \right]}} = pH - p{K_{In}}$$
D
$$\log {{\left[ {I{n^ - }} \right]} \over {\left[ {HIn} \right]}} = pH - p{K_{In}}$$

Explanation

For an acid-base indicator

HIn ⇌ H+ + In-

Kin = $${{\left[ {{H^ + }} \right]\left[ {I{n^ - }} \right]} \over {\left[ {{H_{in}}} \right]}}$$

$$ \Rightarrow $$ $$\left[ {{H^ + }} \right] = {{{K_{in}}\left[ {I{n^ - }} \right]} \over {\left[ {{H_{in}}} \right]}}$$

Take – log on both sides

$$ - \log \left[ {{H^ + }} \right] = - \log \left( {{{{K_{in}}\left[ {I{n^ - }} \right]} \over {\left[ {{H_{in}}} \right]}}} \right)$$

$$ \Rightarrow $$ pH = –log KIn + $$\log {{\left[ {I{n^ - }} \right]} \over {\left[ {{H_{in}}} \right]}}$$

$$ \Rightarrow $$ pH = pKIn + $$\log {{\left[ {I{n^ - }} \right]} \over {\left[ {{H_{in}}} \right]}}$$

$$ \Rightarrow $$ $$\log {{\left[ {I{n^ - }} \right]} \over {\left[ {{H_{in}}} \right]}}$$ = pH - pKIn
2

AIPMT 2004

MCQ (Single Correct Answer)
The solubility product of a sparingly soluble salt AX2 is 3.2 $$ \times $$ 10$$-$$11. Its solubility (in moles/L) is
A
5.6 $$ \times $$ 10$$-$$6
B
3.1 $$ \times $$ 10$$-$$4
C
2 $$ \times $$ 10$$-$$4
D
4 $$ \times $$ 10$$-$$4

Explanation

AX2 A2+ + 2X-
s s 2s


Ksp = = [A2+] [X ]2 = s × (2s)2 = 4s3

$$ \Rightarrow $$ 3.2 $$ \times $$ 10$$-$$11 = 4s3

$$ \Rightarrow $$ s3 = 8 × 10–12

$$ \Rightarrow $$ s = 2 × 10–4 mol L–1
3

AIPMT 2003

MCQ (Single Correct Answer)
The solubility product of AgI at 25oC is 1.0 $$ \times $$ 10$$-$$16 mol2 L$$-$$2. The solubility of AgI in 10$$-$$4 N solution of KI at 25oC is approximately (in mol L$$-$$1
A
1.0 $$ \times $$ 10$$-$$16
B
1.0 $$ \times $$ 10$$-$$12
C
1.0 $$ \times $$ 10$$-$$10
D
1.0 $$ \times $$ 10$$-$$8

Explanation

AgI Ag+ + I-
s s s


Ksp = s2

$$ \Rightarrow $$ 1.0 × 10–16 = s2

$$ \Rightarrow $$ s = 1.0 × 10–8 mol L–1

$$ \therefore $$ [Ag+] = 1.0 × 10–8 mol L–1

Also, in 10–4 N KI solution,

[I–1] = (10–4 + 1.0 × 10–8) mol L–1

$$ \Rightarrow $$ [I–1] = (10–4) mol L–1

[As 1.0 × 10–8 mol L–1 << 1.0 × 10–4 mol L–1]

$$ \therefore $$ Ksp of AgI = [Ag+][I]

= (1.0 × 10–8)(10–4)

= 1.0 × 10–12 mol L–1
4

AIPMT 2003

MCQ (Single Correct Answer)
The reaction quotient (Q) for the reaction

N2(g) + 3H2(g) $$\rightleftharpoons$$ 2NH3(g) is given by

$$Q = {{{{\left[ {N{H_3}} \right]}^2}} \over {\left[ {{N_2}} \right]{{\left[ {{H_2}} \right]}^3}}}$$.

The reaction will proceed from right to left if
A
Q = Kc
B
Q < Kc
C
Q > Kc
D
Q = 0

Explanation

For any reaction to process in forward direction the reaction quotient (Q) must be less than equilibrium constant KC.

Q < Kc

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12