1
AIPMT 2007
MCQ (Single Correct Answer)
+4
-1
In a first-order reaction A $$ \to $$ B, if k is rate constant and initial concentration of the reactant A is 0.5 M, then the half-life is
A
$${{\log 2} \over k}$$
B
$${{\log 2} \over {k\sqrt {0.5} }}$$
C
$${{\ln 2} \over k}$$
D
$${{0.693} \over {0.5k}}$$
2
AIPMT 2007
MCQ (Single Correct Answer)
+4
-1
If 60% of a first order reaction was completed in 60 minutes, 50% of the same reaction would be completed in approximately
(log 4 = 0.60, log 5 = 0.69)
A
45 minutes
B
60 minutes
C
40 minutes
D
50 minutes
3
AIPMT 2006
MCQ (Single Correct Answer)
+4
-1
For the reaction, 2A + B $$ \to $$ 3C + D, which of the following does not express the reaction rate?
A
$$ - {{d\left[ A \right]} \over {2dt}}$$
B
$$ - {{d\left[ C \right]} \over {3dt}}$$
C
$$ - {{d\left[ B \right]} \over {dt}}$$
D
$$ {{d\left[ D \right]} \over {dt}}$$
4
AIPMT 2006
MCQ (Single Correct Answer)
+4
-1
Consider the reaction :  N2(g) + 3H2(g) $$ \to $$ 2NH3(g)

The equality relationship between $${{d\left[ {N{H_3}} \right]} \over {dt}}$$ and $$ - {{d\left[ {{H_2}} \right]} \over {dt}}$$ is
A
$${{d\left[ {N{H_3}} \right]} \over {dt}} = - {{d\left[ {{H_2}} \right]} \over {dt}}$$
B
$${{d\left[ {N{H_3}} \right]} \over {dt}} = - {1 \over 3}{{d\left[ {{H_2}} \right]} \over {dt}}$$
C
$$ + {{d\left[ {N{H_3}} \right]} \over {dt}} = - {2 \over 3}{{d\left[ {{H_2}} \right]} \over {dt}}$$
D
$$ + {{d\left[ {N{H_3}} \right]} \over {dt}} = - {3 \over 2}{{d\left[ {{H_2}} \right]} \over {dt}}$$
NEET Subjects
EXAM MAP