What is molar conductivity at zero concentration in $\Omega^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$ for aluminium sulphate, if molar ionic conductivities at zero concentration of $\mathrm{Al}^{+3}$ and $\mathrm{SO}_4^{-2}$ are $189 \Omega^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$ and $50.1 \Omega^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$ respectively?
For the cell involving following reaction.
$$ \mathrm{Zn}_{(\mathrm{s})}+\mathrm{Ni}_{(\mathrm{aq})}^{+2} \longrightarrow \mathrm{Zn}_{(\mathrm{aq})}^{+2}+\mathrm{Ni}_{(\mathrm{s})}, \mathrm{E}_{\mathrm{cell}}^*=0.5 \mathrm{~V} . $$
What is standard Gibb's energy change of cell reaction?
If $\mathrm{E}^{\circ}\left(\mathrm{Zn}_{(\mathrm{aq})}^{+2} \mid \mathrm{Zn}_{(\mathrm{s})}\right)=-0.76 \mathrm{~V}$.
Calculate potential for $\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Zn}^{+2}(0.01 \mathrm{M})+2 \mathrm{e}^{-}$at 298 K .
Which from following statements is true regarding the cell emf at 298 K for
${ }^{\ominus} \mathrm{Ni}_{(s)}|\stackrel{+2}{\mathrm{~N}} \mathrm{i}(0.01 \mathrm{M}) \| \stackrel{+}{\mathrm{Ag}}(0.01 \mathrm{M})| \stackrel{\oplus}{\mathrm{Ag}_{(s)}}$