1
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+1
-0
 

For the cell reaction,

$$\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{Ag}_{(\mathrm{aq})}^{+} \longrightarrow \mathrm{Zn}_{(\mathrm{aq})}^{+2}+2 \mathrm{Ag}_{(\mathrm{s})}$$

Cell potential is less than $\mathrm{E}_{\text {cell }}^{\circ}$ by 0.0592 V at 298 K when

A
$\left[\mathrm{Zn}^{+2}\right]=1 \mathrm{M}$ and $\left[\mathrm{Ag}^{+}\right]=0.1 \mathrm{M}$
B
$\left[\mathrm{Zn}^{+2}\right]=1 \mathrm{M}$ and $\left[\mathrm{Ag}^{+}\right]=0.01 \mathrm{M}$
C
$\left[\mathrm{Zn}^{+2}\right]=0.1 \mathrm{M}$ and $\left[\mathrm{Ag}^{+}\right]=1 \mathrm{M}$
D
$\left[\mathrm{Zn}^{+2}\right]=0.01 \mathrm{M}$ and $\left[\mathrm{Ag}^{+}\right]=1 \mathrm{M}$

2
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+1
-0
Which from following is the correct relationship between molar conductivity $(\Lambda)$, conductivity $(\mathrm{k})$ and molarity (M) of solution for electrolyte?
A
$\mathrm{k}=\frac{\wedge \times \mathrm{C}}{1000}$
B
$\wedge=\frac{100 \times \mathrm{k}}{\mathrm{C}}$
C
$\wedge=\frac{\mathrm{k} \times \mathrm{C}}{1000}$
D
$\mathrm{k}=\frac{1000 \times \mathrm{C}}{\wedge}$
3
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+1
-0
How long should aqueous NaCl be electrolysed by passing 100 ampere current, so that 0.5 mol chlorine is released at anode?
A
96500 seconds
B
9650 seconds
C
965 seconds
D
96.5 seconds
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Calculate the cell constant of conductivity cell containing 0.1 M KCl solution having resistance $60 \Omega$ and conductivity $0.014 \Omega^{-1} \mathrm{~cm}^{-1}$ at $25^{\circ} \mathrm{C}$.

A
$0.42 \mathrm{~cm}^{-1}$
B
$0.84 \mathrm{~cm}^{-1}$
C
$0.60 \mathrm{~cm}^{-1}$
D
$1.04 \mathrm{~cm}^{-1}$
MHT CET Subjects
EXAM MAP