The angle between the vectors $$\mathbf{a}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$$ and $$\mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$$ is
If the vectors $$\mathbf{a}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}} ; \mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$$ and $$\mathbf{c}=m \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$$ are coplanar, then the value of $$m$$ is
$$\mathbf{a}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}$$ and $$\mathbf{c}=5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$$, then unit vector parallel to $$\mathbf{a}+\mathbf{b}-\mathbf{c}$$ but in opposite direction is
The scalar components of a unit vector which is perpendicular to each of the vectors $$\hat{\imath}+2 \hat{\jmath}-\hat{k}$$ and $$3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$$ are