Vector Algebra · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1

$$ \text { If } \hat{\imath}+\hat{\jmath}-\hat{k} \quad \&~ 2 \hat{\imath}-3 \hat{\jmath}+\hat{k} \text { are adjacent sides of a parallelogram, then length of its diagonals are } $$

COMEDK 2024 Evening Shift
2

Find the value of '$$b$$' such that the scalar product of the vector $$\hat{\imath}+\hat{\jmath}+\hat{k}$$ with the unit vector parallel to the sum of the vectors $$2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$$ and $$b \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$$ is unity

COMEDK 2024 Evening Shift
3

The vector $$(\vec{r})$$ whose magnitude is $$3 \sqrt{2}$$ units which makes an angle of $$\frac{\pi}{4}$$ and $$\frac{\pi}{2}$$ with $$y$$ and $$z$$- axis respectively is

COMEDK 2024 Morning Shift
4

$$ \text { If }|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2=144 ~\&~|\vec{a}|=4 \text { then }|\vec{b}|= $$

COMEDK 2024 Morning Shift
5

The angle between the vectors $$\mathbf{a}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$$ and $$\mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$$ is

COMEDK 2023 Morning Shift
6

If the vectors $$\mathbf{a}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}} ; \mathbf{b}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$$ and $$\mathbf{c}=m \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$$ are coplanar, then the value of $$m$$ is

COMEDK 2023 Morning Shift
7

$$\mathbf{a}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}$$ and $$\mathbf{c}=5 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$$, then unit vector parallel to $$\mathbf{a}+\mathbf{b}-\mathbf{c}$$ but in opposite direction is

COMEDK 2023 Morning Shift
8

The scalar components of a unit vector which is perpendicular to each of the vectors $$\hat{\imath}+2 \hat{\jmath}-\hat{k}$$ and $$3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$$ are

COMEDK 2023 Evening Shift
9

$$ \text { If } \vec{a} \text { and } \vec{b} \text { are unit vectors, then the angle between } \vec{a} \text { and } \vec{b} \text { for which } a-\sqrt{2} \vec{b} \text { is a unit vector is } $$

COMEDK 2023 Evening Shift
10

If $$\theta$$ be the angle between the vectors $$a = 2\widehat i + 2\widehat j - \widehat k$$ and $$b = 6\widehat i - 3\widehat j + 2\widehat k$$, then

COMEDK 2022
11

If x, y and z are non-zero real numbers and $$a = x\widehat i + 2\widehat j,b = y\widehat j + 3\widehat k$$ and $$c = x\widehat i + y\widehat j + z\widehat k$$ are such that $$a \times b = z\widehat i - 3\widehat j + \widehat k$$, then [a b c] is equal to

COMEDK 2022
12

If $$\mathbf{p}=\hat{i}+\hat{j}, \mathbf{q}=4 \hat{k}-\hat{j}$$ and $$\mathbf{r}=\hat{i}+\hat{k}$$, then the unit vector in the direction of $$3 p+q-2 r$$ is

COMEDK 2022
13

The vector that must be added to $$\widehat i - 3\widehat j + 2\widehat k$$ and $$3\widehat i + 6\widehat j - 7\widehat k$$ so resultant vector is a unit vector along the X-axis is

COMEDK 2021
14

If |a| = 8, |b| = 3 and |a $$\times$$ b| = 12, then find the angle between a and b.

COMEDK 2021
15

If for $$a = 2\widehat i + 3\widehat j + \widehat k,b = \widehat i - 2\widehat j + \widehat k$$ and $$c = - 3\widehat i + \widehat j + 2\widehat k$$, then find $$[a\,b\,c]$$.

COMEDK 2021
16

If a and b are vectors such that $$|a + b|=|a-b|$$, then the angle between a and b is

COMEDK 2020
17

If $$a = 2\widehat i + 3\widehat j - \widehat k,b = \widehat i + 2\widehat j - 5\widehat k,c = 3\widehat i + 5\widehat j - \widehat k$$, then a vector perpendicular to a and in the plane containing b and c is

COMEDK 2020
18

OA and BO are two vectors of magnitudes 5 and 6 respectively. If $$\angle BOA=60^\circ$$, then OA . OB is equal to

COMEDK 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12