Indefinite Integration · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1
$$\int \frac{\sin 2 x}{(1+\sin x)(2+\sin x)} d x=a \log |1+\sin x|-b \log |2+\sin x|+c$$ then the value of $a$ and $b$ is ----------------
COMEDK 2025 Evening Shift
2
$\int\left(e^{x \log _e 6}\right) e^x d x=\phi(x)+c$ then $\phi(x)=$
COMEDK 2025 Evening Shift
3
$\int \frac{\sin x+\cos x}{\sqrt{1+2 \sin x \cos x}} d x=\varphi(x)+C$ Then $\varphi(x)=$
COMEDK 2025 Afternoon Shift
4
$\int \frac{e^{\tan ^{-1} x}}{\left(1+x^2\right)}\left(1+x+x^2\right) d x=$
COMEDK 2025 Afternoon Shift
5
$\int \frac{x}{(x-1)(x-2)^2} d x=a \log \left|\frac{x-1}{x-2}\right|+\frac{b}{(x-2)}+c$ then
COMEDK 2025 Afternoon Shift
6
$\int \frac{d x}{x \sqrt{4 x^2-9}}=$
COMEDK 2025 Afternoon Shift
7
$\int \frac{1}{\sqrt{9+8 x-x^2}} d x=\varphi(x)+c$ then $\varphi(x)=$
COMEDK 2025 Morning Shift
8
$\int \tan ^2\left(5-\frac{x}{2}\right) d x=$
COMEDK 2025 Morning Shift
9
$\int \log x^2 d x=$
COMEDK 2025 Morning Shift
10
$\int \frac{d x}{(x+2)\left(x^2+1\right)}=p \log |x+2|+q \log \left|x^2+1\right|+r \tan ^{-1} x+c$ then $p+q+r=$
COMEDK 2025 Morning Shift
11

$$ \text { The value of } \int \frac{d x}{\sqrt{2 x-x^2}} \text { is } $$

COMEDK 2024 Evening Shift
12

$$ \int e^x\left[\frac{x^2+1}{(x+1)^2}\right] d x \quad \text { is equal to } $$

COMEDK 2024 Evening Shift
13

$$ \int \frac{f^{\prime}(x)}{f(x) \log (f(x))} d x \text { is equal to } $$

COMEDK 2024 Afternoon Shift
14

$$ \int \log x(\log x+2) d x \text { equals to } $$

COMEDK 2024 Afternoon Shift
15

$$ \int \frac{1+x+\sqrt{x+x^2}}{\sqrt{x}+\sqrt{1+x}} d x \text { is equal to } $$

COMEDK 2024 Afternoon Shift
16

If $$\int \frac{1}{\sqrt{\sin ^3 x \cos x}} d x=\frac{k}{\sqrt{\tan x}}+c$$ then the value of $$k$$ is

COMEDK 2024 Morning Shift
17

$$\int \sqrt{x^2-4 x+2} d x=$$

COMEDK 2024 Morning Shift
18

$$ \int \frac{x}{x^4-16} d x= $$

COMEDK 2024 Morning Shift
19

$$ \text { The value of } \int \frac{1}{x+\sqrt{x-1}} d x \text { is } $$

COMEDK 2024 Morning Shift
20

$$\int \frac{x d x}{2(1+x)^{3 / 2}}$$ is equal to

COMEDK 2023 Morning Shift
21

$$\int \frac{4^x}{\sqrt{1-16^x}} d x$$ is equal to

COMEDK 2023 Morning Shift
22

$$\int x^x(1+\log x) d x$$ is equal to

COMEDK 2023 Evening Shift
23

$$ \int \sqrt{\operatorname{cosec} x-1} d x= $$

COMEDK 2023 Evening Shift
24

$$ \int e^x\left(1+\tan x+\tan ^2 x\right) d x \text { is equal to } $$

COMEDK 2023 Evening Shift
25

$$ \int \frac{\cos 4 x+1}{\cot x-\tan x} d x= $$

COMEDK 2023 Evening Shift
26

$$\int \frac{1}{x \sqrt{a x-x^2}} d x$$ is

COMEDK 2022
27

$$\int \frac{3^x}{\sqrt{1-9^x}} d x$$ is equal to

COMEDK 2022
28

$$\int {{{{2^x}} \over {\sqrt {1 - {4^x}} }}dx} $$ is equal to

COMEDK 2021
29

Integral of $$\int {{{dx} \over {{x^2}{{[1 + {x^4}]}^{3/4}}}}} $$.

COMEDK 2021
30

$${{3{x^2} + 1} \over {{x^2} - 6x + 8}}$$ is equal to

COMEDK 2020
31

The value of $$\int {{1 \over {1 + \cos 8x}}dx} $$ is

COMEDK 2020
32

The value of $$\int {{e^x}({x^5} + 5{x^4} + 1)\,.\,dx} $$ is

COMEDK 2020
33

The value of $$\int {{{{x^2} + 1} \over {{x^2} - 1}}dx} $$ is

COMEDK 2020
EXAM MAP