# Indefinite Integration · Mathematics · COMEDK

Start Practice

COMEDK 2024 Evening Shift
$$\text { The value of } \int \frac{d x}{\sqrt{2 x-x^2}} \text { is }$$
COMEDK 2024 Evening Shift
$$\int e^x\left[\frac{x^2+1}{(x+1)^2}\right] d x \quad \text { is equal to }$$
COMEDK 2024 Morning Shift
If $$\int \frac{1}{\sqrt{\sin ^3 x \cos x}} d x=\frac{k}{\sqrt{\tan x}}+c$$ then the value of $$k$$ is
COMEDK 2024 Morning Shift
$$\int \sqrt{x^2-4 x+2} d x=$$
COMEDK 2024 Morning Shift
$$\int \frac{x}{x^4-16} d x=$$
COMEDK 2024 Morning Shift
$$\text { The value of } \int \frac{1}{x+\sqrt{x-1}} d x \text { is }$$
COMEDK 2023 Morning Shift
$$\int \frac{x d x}{2(1+x)^{3 / 2}}$$ is equal to
COMEDK 2023 Morning Shift
$$\int \frac{4^x}{\sqrt{1-16^x}} d x$$ is equal to
COMEDK 2023 Evening Shift
$$\int x^x(1+\log x) d x$$ is equal to
COMEDK 2023 Evening Shift
$$\int \sqrt{\operatorname{cosec} x-1} d x=$$
COMEDK 2023 Evening Shift
$$\int e^x\left(1+\tan x+\tan ^2 x\right) d x \text { is equal to }$$
COMEDK 2023 Evening Shift
$$\int \frac{\cos 4 x+1}{\cot x-\tan x} d x=$$
COMEDK 2022
$$\int \frac{1}{x \sqrt{a x-x^2}} d x$$ is
COMEDK 2022
$$\int \frac{3^x}{\sqrt{1-9^x}} d x$$ is equal to
COMEDK 2021
$$\int {{{{2^x}} \over {\sqrt {1 - {4^x}} }}dx}$$ is equal to
COMEDK 2021
Integral of $$\int {{{dx} \over {{x^2}{{[1 + {x^4}]}^{3/4}}}}}$$.
COMEDK 2020
$${{3{x^2} + 1} \over {{x^2} - 6x + 8}}$$ is equal to
COMEDK 2020
The value of $$\int {{1 \over {1 + \cos 8x}}dx}$$ is
COMEDK 2020
The value of $$\int {{e^x}({x^5} + 5{x^4} + 1)\,.\,dx}$$ is
COMEDK 2020
The value of $$\int {{{{x^2} + 1} \over {{x^2} - 1}}dx}$$ is
EXAM MAP
Medical
NEET