Definite Integration · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1
$\int_0^1 x(1-x)^{99} d x=$
COMEDK 2025 Evening Shift
2
$\int\limits_{-2}^2 \frac{|x-3|}{x-3} d x=$
COMEDK 2025 Evening Shift
3
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} d x=$
COMEDK 2025 Evening Shift
4
$\int\limits_0^{\frac{\pi}{2}} \log \left(\frac{5+4 \sin x}{5+4 \cos x}\right) d x=$
COMEDK 2025 Afternoon Shift
5
$\int_0^\pi \frac{e^{\cos x}}{e^{\cos x}+e^{-\cos x}} d x$ is equal to
COMEDK 2025 Morning Shift
6

$$ \text { The value of the integral } \int_\limits{\frac{1}{3}}^1 \frac{\left(x-x^3\right)^{\frac{1}{3}}}{x^4} d x \text { is } $$

COMEDK 2024 Evening Shift
7

If $$a$$ is a real number such that $$\int_\limits0^a x d x \leq a+4$$ then

COMEDK 2024 Evening Shift
8

$$ \text { If } I_n=\int_\limits0^{\frac{\pi}{4}} \tan ^n x d x \text {, for } n \geq 2 \text {, then } I_n+I_{n-2}= $$

COMEDK 2024 Evening Shift
9

$$ \int_\limits0^{\frac{\pi}{2}} \frac{\cos x}{1+\cos x+\sin x} d x= $$

COMEDK 2024 Afternoon Shift
10

$$ \int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x-\cos ^3 x} d x \text { is equal to } $$

COMEDK 2024 Afternoon Shift
11

$$ \int_\limits{-1}^1 \frac{d}{d x}\left(\tan ^{-1} \frac{1}{x}\right) d x \text { is } $$

COMEDK 2024 Morning Shift
12

$$\int\limits_{-\pi / 2}^{\pi / 2} \sin ^2 x d x$$ is equal to

COMEDK 2023 Morning Shift
13

$$ \int_0^2\left|x^2+2 x-3\right| d x \text { is equal to } $$

COMEDK 2023 Evening Shift
14

$$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {\cos x\,dx} $$

COMEDK 2022
15

$$\int_{ - \pi /2}^{\pi /2} {\sin xdx} $$

COMEDK 2021
16

The value of the integral $$\int\limits_0^{\pi /2} {({{\sin }^{100}}x - {{\cos }^{100}}x)dx} $$ is

COMEDK 2020
17

If $$k\int\limits_0^1 {x\,.\,f(3x)dx = \int\limits_0^3 {t\,.\,f(t)dt} } $$, then the value of $$k$$ is

COMEDK 2020
EXAM MAP