Differential Equations · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1
Integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{x^3+y}{x}$ is
COMEDK 2025 Afternoon Shift
2
The degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{4}}=\left(\frac{d^2 y}{d x^2}\right)^{\frac{1}{3}}$
COMEDK 2025 Afternoon Shift
3
Which of the following transformations reduce the differential equation $\frac{d z}{d x}+\frac{z}{x} \log z=\frac{z}{x^2}(\log z)^2$ into the form $\frac{d u}{d x}+P(x) u=Q(x)$
COMEDK 2025 Afternoon Shift
4
Solution of the differential equation $y \frac{d y}{d x}+x=0$ represents a family of
COMEDK 2025 Afternoon Shift
5
The solution of $(x+\log y) d y+y d x=0$ when $y(0)=1$ is
COMEDK 2025 Morning Shift
6
The order of the differential equation $\frac{d}{d x}\left[\left(\frac{d y}{d x}\right)^3\right]=0$ is
COMEDK 2025 Morning Shift
7
The general solution of the differential equation $(x-y) d y=(x+y) d x$ is
COMEDK 2025 Morning Shift
8
The solution of the differential equation $\frac{d y}{d x}+y \log y \cot x=0$ is
COMEDK 2025 Morning Shift
9

The general solution of the differential equation $$x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right)$$ is

COMEDK 2024 Evening Shift
10

$$ \text { The general solution of the differential equation }(1+\tan y)(d x-d y)+2 x d y=0 \text { is } $$

COMEDK 2024 Evening Shift
11

The sum of the order and degree of the differential equation $$\left(\frac{d^2 y}{d x^2}\right)^5+\frac{4\left(\frac{d^2 y}{d x^2}\right)^3}{\left(\frac{d^3 y}{d x^3}\right)}+\frac{d^3 y}{d x^3}=x^2-1$$ is

COMEDK 2024 Evening Shift
12

$$ \text { If } \frac{d y}{d x}=y+3>0 \text { and } y(0)=2 \text { then } y(\log 2) \text { is equal to } $$

COMEDK 2024 Evening Shift
13

$$ \text { The general solution of the differential equation } \frac{d y}{d x}=\frac{x y}{x^2+y^2} \text { is } $$

COMEDK 2024 Afternoon Shift
14

$$ \text { Integrating factor of the differential equation } \frac{d y}{d x}+y=\frac{x^3+y}{x} \text { is } $$

COMEDK 2024 Afternoon Shift
15

$$ \text { The general solution of } \frac{d y}{d x}=\sin ^{-1} x \text { is } $$

COMEDK 2024 Afternoon Shift
16

Degree of the differential equation $$\log \left(\frac{d y}{d x}\right)^{\frac{1}{2}}=5 x+4 y$$ is

COMEDK 2024 Afternoon Shift
17

The particular solution of $$\frac{d y}{d x}+\sqrt{\frac{1-y^2}{1-x^2}}=0$$, when $$x=0, y=\frac{1}{2}$$ is

COMEDK 2024 Morning Shift
18

The particular solution of the differential equation $$\cos x \frac{d y}{d x}+y=\sin x$$ at $$y(0)=1$$

COMEDK 2024 Morning Shift
19

The differential equation of all non-vertical lines in a plane is

COMEDK 2023 Morning Shift
20

The general solution of $$\left(\frac{d y}{d x}\right)^2=1-x^2-y^2+x^2 y^2$$ is

COMEDK 2023 Morning Shift
21

The solution of the differential equation $$\left(\frac{d y}{d x}\right) \tan y=\sin (x+y)+\sin (x-y)$$ is

COMEDK 2023 Morning Shift
22

The particular solution of $$e^{\frac{d y}{d x}}=2 x+1$$ given that $$y=1$$ when $$x=0$$ is

COMEDK 2023 Evening Shift
23

The general solution of the differential equation $$\left(1+y^2\right) d x=\left(\tan ^{-1} y-x\right) d y$$

COMEDK 2023 Evening Shift
24

The solution of the differential equation $$\frac{d y}{d x}+y \cos x=\frac{1}{2} \sin 2 x$$

COMEDK 2023 Evening Shift
25

The sum of the degree and order of the following differential equation $$\left[1-\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{2}}=k x \frac{d^2 y}{d x^2}$$

COMEDK 2023 Evening Shift
26

The solution of the differential equation $${{{d^2}y} \over {d{x^2}}} = 0$$ represents

COMEDK 2022
27

The solution of the differential equation $$\frac{d y}{d x}+\sqrt{\frac{1-y^2}{1-x^2}}=0$$ is

COMEDK 2022
28

The solution of the differential equation $$x \frac{d y}{d x}=\cot y$$ is

COMEDK 2022
29

The solution of the differential equation $${\sec ^2}x\tan ydx + {\sec ^2}y\tan xdy = 0$$ is

COMEDK 2021
30

The solution of the differential equation $$y{{dy} \over {dx}} = x\left[ {{{{y^2}} \over {{x^2}}} + {{\phi \left( {{{{y^2}} \over {{x^2}}}} \right)} \over {\phi '\left( {{{{y^2}} \over {{x^2}}}} \right)}}} \right]$$ is (where, C is a constant)

COMEDK 2021
31

The solution of the differential equation $$(1 + {y^2}) + (x - {e^{{{\tan }^{ - 1}}y}}){{dy} \over {dx}} = 0$$ is

COMEDK 2021
32

The differential equation of the family of straight lines whose slope is equal to y-intercept is

COMEDK 2020
33

The order and degree of the differential equation $${\left[ {1 + {{\left( {{{dy} \over {dx}}} \right)}^5}} \right]^{{1 \over 3}}} = {{{d^2}y} \over {d{x^2}}}$$ are respectively

COMEDK 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12