Limits, Continuity and Differentiability · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1

Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a x^2+b x+c=0$$, then $$\lim _\limits{x \rightarrow \alpha} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\alpha)^2}$$ is equal to

COMEDK 2024 Evening Shift
2

$$ \text { The value of } \lim _\limits{x \rightarrow 1} \frac{x^{15}-1}{x^{10}-1}= $$

COMEDK 2024 Evening Shift
3

$$ \text { If } f(x)=\left\{\begin{array}{cc} x & , \quad 0 \leq x \leq 1 \\ 2 x-1 & , \quad x>1 \end{array}\right. \text { then } $$

COMEDK 2024 Evening Shift
4

$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{1-\sin x}{(\pi-2 x)^2} & , \quad \text { if } x \neq \frac{\pi}{2} \\ \lambda, & \text { if } x=\frac{\pi}{2} \end{array}\right. $$

Then $$f(x)$$ will be continues function at $$x=\frac{\pi}{2}$$, then $$\lambda=$$

COMEDK 2024 Morning Shift
5

$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{a+x}-\sqrt{a}}{x \sqrt{a(a+x)}}$$ equals to

COMEDK 2024 Morning Shift
6

$$ \lim _\limits{x \rightarrow 0}\left(\frac{\sin a x}{\sin b x}\right)^k \text { equals } $$

COMEDK 2024 Morning Shift
7

The value of $$\lim _\limits{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{2 x}$$ is equal to

COMEDK 2023 Morning Shift
8

If $$f(x) = \left\{ {\matrix{ {2\sin x} & ; & { - \pi \le x \le {{ - \pi } \over 2}} \cr {a\sin x + b} & ; & { - {\pi \over 2} < x < {\pi \over 2}} \cr {\cos x} & ; & {{\pi \over 2} \le x \le \pi } \cr } } \right.$$ and it is continuous on $$[-\pi, \pi]$$, then

COMEDK 2023 Morning Shift
9

The value of $$\lim _\limits{x \rightarrow \infty}\left(\frac{x^2-2 x+1}{x^2-4 x+2}\right)^{2 x}$$ is

COMEDK 2023 Morning Shift
10

$$ \lim _\limits{x \rightarrow 0} \frac{a^x-b^x}{x} \text { is equal to } $$

COMEDK 2023 Evening Shift
11

$$ \text { The function defined by } f(x)=\left\{\begin{array}{cc} \frac{\sin x}{x}+\cos x & x>0 \\ -5 k & x=0 \\ \frac{4(1-\sqrt{1-x})}{x} & x<0 \end{array} \quad \text { is continous at } x=0, \quad \text { then } k\right. \text { equals } $$

COMEDK 2023 Evening Shift
12

If $$\mathop {\lim }\limits_{x \to 0} {{(1 + {a^3}) + 8{e^{1/x}}} \over {1 + (1 - {b^3}){e^{1/x}}}} = 2$$, then

COMEDK 2022
13

If the derivative of the function $$f(x) = \left\{ {\matrix{ {b{x^2} + ax + 4;} & {x \ge - 1} \cr {a{x^2} + b;} & {x < - 1} \cr } } \right.$$ is everywhere continuous, then

COMEDK 2022
14

If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {a \over x} + {b \over {{x^2}}}} \right)^{2x}} = {e^2}$$, then

COMEDK 2022
15

If $$L = \mathop {\lim }\limits_{x \to 0} {{a - \sqrt {{a^2} - {x^2}} - {{{x^2}} \over 4}} \over {{x^4}}},a > 0$$. If L is finite, then

COMEDK 2021
16

If $$f(x) = \left\{ {\matrix{ {ax + 3,} & {x \le 2} \cr {{a^2}x - 1} & {x > 2} \cr } } \right.$$, then the values of a for which f is continuous for all x are

COMEDK 2021
17

The value of $$\mathop {\lim }\limits_{x \to 0} \left( {{{{a^x} + {b^x} + {c^x}} \over 3}} \right),(a,b,c > 0)$$ is

COMEDK 2021
18

$$\mathop {\lim }\limits_{x \to 1} {{\tan ({x^2} - 1)} \over {x - 1}}$$ is equal to

COMEDK 2020
19

If the function $$f(x) = \left\{ {\matrix{ {{{1 - \cos x} \over {{x^2}}},} & {\mathrm{for}\,x \ne 0} \cr {k,} & {\mathrm{for}\,x = 0} \cr } } \right.$$ is continuous at x = 0, then the value of k is

COMEDK 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12