Limits, Continuity and Differentiability · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1

Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a x^2+b x+c=0$$, then $$\lim _\limits{x \rightarrow \alpha} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\alpha)^2}$$ is equal to

COMEDK 2024 Evening Shift
2

$$ \text { The value of } \lim _\limits{x \rightarrow 1} \frac{x^{15}-1}{x^{10}-1}= $$

COMEDK 2024 Evening Shift
3

$$ \text { If } f(x)=\left\{\begin{array}{cc} x & , \quad 0 \leq x \leq 1 \\ 2 x-1 & , \quad x>1 \end{array}\right. \text { then } $$

COMEDK 2024 Evening Shift
4

$$ \lim _\limits{x \rightarrow 0} \frac{a^x-b^x}{c^x-d^x}= $$

COMEDK 2024 Afternoon Shift
5

$$ \text { The number of points of discontinuity of the rational function } f(x)=\frac{x^2-3 x+2}{4 x-x^3} $$

COMEDK 2024 Afternoon Shift
6

$$ \text { The value of } \lim _\limits{x \rightarrow 0} \frac{\sin (a+x)-\sin (a-x)}{x} \text { is } $$

COMEDK 2024 Afternoon Shift
7

$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{1-\sin x}{(\pi-2 x)^2} & , \quad \text { if } x \neq \frac{\pi}{2} \\ \lambda, & \text { if } x=\frac{\pi}{2} \end{array}\right. $$

Then $$f(x)$$ will be continues function at $$x=\frac{\pi}{2}$$, then $$\lambda=$$

COMEDK 2024 Morning Shift
8

$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{a+x}-\sqrt{a}}{x \sqrt{a(a+x)}}$$ equals to

COMEDK 2024 Morning Shift
9

$$ \lim _\limits{x \rightarrow 0}\left(\frac{\sin a x}{\sin b x}\right)^k \text { equals } $$

COMEDK 2024 Morning Shift
10

The value of $$\lim _\limits{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{2 x}$$ is equal to

COMEDK 2023 Morning Shift
11

If $$f(x) = \left\{ {\matrix{ {2\sin x} & ; & { - \pi \le x \le {{ - \pi } \over 2}} \cr {a\sin x + b} & ; & { - {\pi \over 2} < x < {\pi \over 2}} \cr {\cos x} & ; & {{\pi \over 2} \le x \le \pi } \cr } } \right.$$ and it is continuous on $$[-\pi, \pi]$$, then

COMEDK 2023 Morning Shift
12

The value of $$\lim _\limits{x \rightarrow \infty}\left(\frac{x^2-2 x+1}{x^2-4 x+2}\right)^{2 x}$$ is

COMEDK 2023 Morning Shift
13

$$ \lim _\limits{x \rightarrow 0} \frac{a^x-b^x}{x} \text { is equal to } $$

COMEDK 2023 Evening Shift
14

$$ \text { The function defined by } f(x)=\left\{\begin{array}{cc} \frac{\sin x}{x}+\cos x & x>0 \\ -5 k & x=0 \\ \frac{4(1-\sqrt{1-x})}{x} & x<0 \end{array} \quad \text { is continous at } x=0, \quad \text { then } k\right. \text { equals } $$

COMEDK 2023 Evening Shift
15

If $$\mathop {\lim }\limits_{x \to 0} {{(1 + {a^3}) + 8{e^{1/x}}} \over {1 + (1 - {b^3}){e^{1/x}}}} = 2$$, then

COMEDK 2022
16

If the derivative of the function $$f(x) = \left\{ {\matrix{ {b{x^2} + ax + 4;} & {x \ge - 1} \cr {a{x^2} + b;} & {x < - 1} \cr } } \right.$$ is everywhere continuous, then

COMEDK 2022
17

If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {a \over x} + {b \over {{x^2}}}} \right)^{2x}} = {e^2}$$, then

COMEDK 2022
18

If $$L = \mathop {\lim }\limits_{x \to 0} {{a - \sqrt {{a^2} - {x^2}} - {{{x^2}} \over 4}} \over {{x^4}}},a > 0$$. If L is finite, then

COMEDK 2021
19

If $$f(x) = \left\{ {\matrix{ {ax + 3,} & {x \le 2} \cr {{a^2}x - 1} & {x > 2} \cr } } \right.$$, then the values of a for which f is continuous for all x are

COMEDK 2021
20

The value of $$\mathop {\lim }\limits_{x \to 0} \left( {{{{a^x} + {b^x} + {c^x}} \over 3}} \right),(a,b,c > 0)$$ is

COMEDK 2021
21

$$\mathop {\lim }\limits_{x \to 1} {{\tan ({x^2} - 1)} \over {x - 1}}$$ is equal to

COMEDK 2020
22

If the function $$f(x) = \left\{ {\matrix{ {{{1 - \cos x} \over {{x^2}}},} & {\mathrm{for}\,x \ne 0} \cr {k,} & {\mathrm{for}\,x = 0} \cr } } \right.$$ is continuous at x = 0, then the value of k is

COMEDK 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12