Limits, Continuity and Differentiability · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1
Find the value of $\lim\limits_{h \rightarrow 0} \frac{(a+h)^2 \sin (a+h)-a^2 \sin a}{h}$
COMEDK 2025 Morning Shift
2
The value of $\lim _\limits{x \rightarrow 0} \frac{(1-x)^n-1}{x}=$
COMEDK 2025 Morning Shift
3
If $f(x)=\left\{\begin{array}{ll}\frac{1-x^m}{1-x} & \text { if } x \neq 1 \\ 2 m-1 & \text { if } x=1\end{array}\right.$ and the function is discontinuous at $x=1$, then
COMEDK 2025 Morning Shift
4

Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a x^2+b x+c=0$$, then $$\lim _\limits{x \rightarrow \alpha} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\alpha)^2}$$ is equal to

COMEDK 2024 Evening Shift
5

$$ \text { The value of } \lim _\limits{x \rightarrow 1} \frac{x^{15}-1}{x^{10}-1}= $$

COMEDK 2024 Evening Shift
6

$$ \text { If } f(x)=\left\{\begin{array}{cc} x & , \quad 0 \leq x \leq 1 \\ 2 x-1 & , \quad x>1 \end{array}\right. \text { then } $$

COMEDK 2024 Evening Shift
7

$$ \lim _\limits{x \rightarrow 0} \frac{a^x-b^x}{c^x-d^x}= $$

COMEDK 2024 Afternoon Shift
8

$$ \text { The number of points of discontinuity of the rational function } f(x)=\frac{x^2-3 x+2}{4 x-x^3} $$

COMEDK 2024 Afternoon Shift
9

$$ \text { The value of } \lim _\limits{x \rightarrow 0} \frac{\sin (a+x)-\sin (a-x)}{x} \text { is } $$

COMEDK 2024 Afternoon Shift
10

$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{1-\sin x}{(\pi-2 x)^2} & , \quad \text { if } x \neq \frac{\pi}{2} \\ \lambda, & \text { if } x=\frac{\pi}{2} \end{array}\right. $$

Then $$f(x)$$ will be continues function at $$x=\frac{\pi}{2}$$, then $$\lambda=$$

COMEDK 2024 Morning Shift
11

$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{a+x}-\sqrt{a}}{x \sqrt{a(a+x)}}$$ equals to

COMEDK 2024 Morning Shift
12

$$ \lim _\limits{x \rightarrow 0}\left(\frac{\sin a x}{\sin b x}\right)^k \text { equals } $$

COMEDK 2024 Morning Shift
13

The value of $$\lim _\limits{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{2 x}$$ is equal to

COMEDK 2023 Morning Shift
14

If $$f(x) = \left\{ {\matrix{ {2\sin x} & ; & { - \pi \le x \le {{ - \pi } \over 2}} \cr {a\sin x + b} & ; & { - {\pi \over 2} < x < {\pi \over 2}} \cr {\cos x} & ; & {{\pi \over 2} \le x \le \pi } \cr } } \right.$$ and it is continuous on $$[-\pi, \pi]$$, then

COMEDK 2023 Morning Shift
15

The value of $$\lim _\limits{x \rightarrow \infty}\left(\frac{x^2-2 x+1}{x^2-4 x+2}\right)^{2 x}$$ is

COMEDK 2023 Morning Shift
16

$$ \lim _\limits{x \rightarrow 0} \frac{a^x-b^x}{x} \text { is equal to } $$

COMEDK 2023 Evening Shift
17

$$ \text { The function defined by } f(x)=\left\{\begin{array}{cc} \frac{\sin x}{x}+\cos x & x>0 \\ -5 k & x=0 \\ \frac{4(1-\sqrt{1-x})}{x} & x<0 \end{array} \quad \text { is continous at } x=0, \quad \text { then } k\right. \text { equals } $$

COMEDK 2023 Evening Shift
18

If $$\mathop {\lim }\limits_{x \to 0} {{(1 + {a^3}) + 8{e^{1/x}}} \over {1 + (1 - {b^3}){e^{1/x}}}} = 2$$, then

COMEDK 2022
19

If the derivative of the function $$f(x) = \left\{ {\matrix{ {b{x^2} + ax + 4;} & {x \ge - 1} \cr {a{x^2} + b;} & {x < - 1} \cr } } \right.$$ is everywhere continuous, then

COMEDK 2022
20

If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {a \over x} + {b \over {{x^2}}}} \right)^{2x}} = {e^2}$$, then

COMEDK 2022
21

If $$L = \mathop {\lim }\limits_{x \to 0} {{a - \sqrt {{a^2} - {x^2}} - {{{x^2}} \over 4}} \over {{x^4}}},a > 0$$. If L is finite, then

COMEDK 2021
22

If $$f(x) = \left\{ {\matrix{ {ax + 3,} & {x \le 2} \cr {{a^2}x - 1} & {x > 2} \cr } } \right.$$, then the values of a for which f is continuous for all x are

COMEDK 2021
23

The value of $$\mathop {\lim }\limits_{x \to 0} \left( {{{{a^x} + {b^x} + {c^x}} \over 3}} \right),(a,b,c > 0)$$ is

COMEDK 2021
24

$$\mathop {\lim }\limits_{x \to 1} {{\tan ({x^2} - 1)} \over {x - 1}}$$ is equal to

COMEDK 2020
25

If the function $$f(x) = \left\{ {\matrix{ {{{1 - \cos x} \over {{x^2}}},} & {\mathrm{for}\,x \ne 0} \cr {k,} & {\mathrm{for}\,x = 0} \cr } } \right.$$ is continuous at x = 0, then the value of k is

COMEDK 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12