1
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
If $|\vec{a}|=2 \sqrt{2}$ and $|\vec{b}|=3$ and angle between $\vec{a}$ and $\vec{b}$ is $\frac{\pi}{4}$. If a parallelogram is constructed with adjacent sides $\vec{p}=2 \vec{a}-3 \vec{b}$ and $\vec{q}=\vec{a}+\vec{b}$ then the product of length of both the diagonals is :
A
$12 \sqrt{26}$
B
$6$
C
$60 \sqrt{2}$
D
$18 \sqrt{260}$
2
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
Position vector of P and Q are $\hat{\imath}+3 \hat{\jmath}-7 \hat{k}$ and $5 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$ respectively. Then the cosine of the angle between $\overrightarrow{P Q}$ and y -axis is
A
$\frac{4}{\sqrt{162}}$
B
$\frac{5}{\sqrt{162}}$
C
$-\frac{5}{\sqrt{162}}$
D
$-\frac{4}{\sqrt{162}}$
3
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $a \neq 0$ and $\vec{a} \times \vec{b}=2(\vec{a} \times \vec{c}),|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$ if $\vec{b}-2 \vec{c}=\lambda \vec{a}$ then $\lambda^2$ equals :
A
$-$4
B
16
C
1
D
4
4
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
A line $L_1$ passing through the point A with position vector $\vec{a}=4 \hat{i}+2 \hat{j}+2 \hat{k}$ is parallel to the vector $\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$. The length of the perpendicular drawn from a point P with position vector $\vec{p}=\hat{i}+2 \hat{j}+3 \hat{k}$ to $L_1$ is
A
0
B
$\sqrt{15}$
C
$2\sqrt3$
D
$\sqrt{10}$
COMEDK Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12