Linear Programming · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1
The solution for the following system of inequalities $3 x-7<5+x$ and $11-5 x \leq 1$ on a real number line is
COMEDK 2025 Evening Shift
2
Given $Z=80 x+120 y$, subject to constraints are $x+3 y \leq 30 ; 3 x+4 y \leq 60 ; x \geq 0 ; y \geq 0$. P is one of the corner points of the feasible region for the given Linear Programming Problem. Then the coordinate of $P$ is
COMEDK 2025 Evening Shift
3
The corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$ and $(3,0)$, If objective function is $Z=p x+q y, p, q>0$ then the condition on $p$ and $q$ so that the minimum of $Z$ occurs at $(3,0)$ and $(1,1)$ is
COMEDK 2025 Afternoon Shift
4

For a given Linear Programming problem, the objective function is

$$z=3 x+2 y$$

Subject to constraints are

$$\begin{aligned} & 4 x+3 y \leq 60 \\ & x \geq 3 \\ & y \leq 2 x \\ & y \geq 0 \end{aligned}$$

P is one of the corner points of the feasible region for the given Linear Programming problem. Then the coordinate of P is

COMEDK 2025 Morning Shift
5

The maximum value of $$P=500 x+400 y$$ for the given constraints $$x+y \leq 200, \quad x \geq 20, \quad y \geq 4 x, \quad y \geq 0$$ is

COMEDK 2024 Evening Shift
6

$$ \text { The maximum value of } Z=3 x+4 y \text { for the given constraints } x+2 y \leq 76,2 x+y \leq 104, x \geq 0, y \geq 0 \text { is } $$

COMEDK 2024 Afternoon Shift
7

The minimum value of $$Z=150 x+200 y$$ for the given constraints

$$\begin{aligned} & 3 x+5 y \geq 30 \\ & x+y \geq 8 ; x \geq 0, y \geq 0 \text { is } \end{aligned}$$

COMEDK 2024 Morning Shift
8

The feasible region for the inequations $$x+2 y \geq 4,2 x+y \leq 6, x, y \geq 0$$ is

COMEDK 2023 Morning Shift
9

The maximum value of $$Z=10 x+16 y$$, subject to constraints $$x \geq 0, y \geq 0, x+y \leq 12,2 x+y \leq 20$$ is

COMEDK 2023 Morning Shift
10

The maximum value of $$Z=12 x+13 y$$, subject to constraints $$x \geq 0, y \geq 0, x+y \leq 5$$ and $$3 x+y \leq 9$$ is

COMEDK 2023 Morning Shift
11

The minimum value of $$Z=3 x+5 y$$, given subject to the constraints $$x+y \geq 2, x+3 y \geq 3, x, y \geq 0$$ is

COMEDK 2023 Evening Shift
12

Shade the feasible region for the inequations $$6x+4y\le120, 3x+10y\le180,x,y\ge0$$ in a rough figure.

COMEDK 2022
13

The maximum of Z is where, $$Z=4x+2y$$ subject to constraints $$4x+2y\ge46,x+3y\le24$$ and $$x,y\ge0$$ is

COMEDK 2022
14

Maximum value of $$z=12x+3y$$, subject to constraints $$x\ge0,y\ge0,x+y\ge5$$ and $$3x+y\le9$$ is

COMEDK 2022
15

Shade the feasible region for the inequations $$x+y\ge2,2x+3y\le6,x\ge0,y\ge0$$ in a rough figure.

COMEDK 2021
16

The maximum value of $$x+y$$ subject to $$2x+3y\le6,x\ge0,y\ge0$$ is

COMEDK 2021
17

Write the solution of the following LPP

Maximize $$Z=x+y$$

Subject to $$3x+4y\le12,x\ge0,y\ge0$$.

Which point the value of Z is maximum?

COMEDK 2021
EXAM MAP