1
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { If } \hat{\imath}+\hat{\jmath}-\hat{k} \quad \&~ 2 \hat{\imath}-3 \hat{\jmath}+\hat{k} \text { are adjacent sides of a parallelogram, then length of its diagonals are } $$

A
$$\sqrt{3}, \quad \sqrt{14}$$
B
$$\sqrt{13}, \sqrt{14}$$
C
$$\sqrt{21}, \quad \sqrt{3}$$
D
$$\sqrt{21}, \quad \sqrt{13}$$
2
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

Find the value of '$$b$$' such that the scalar product of the vector $$\hat{\imath}+\hat{\jmath}+\hat{k}$$ with the unit vector parallel to the sum of the vectors $$2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$$ and $$b \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$$ is unity

A
$$-2$$
B
0
C
$$-1$$
D
1
3
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The vector $$(\vec{r})$$ whose magnitude is $$3 \sqrt{2}$$ units which makes an angle of $$\frac{\pi}{4}$$ and $$\frac{\pi}{2}$$ with $$y$$ and $$z$$- axis respectively is

A
$$\hat{\imath} \pm 3 \hat{\jmath}$$
B
$$\hat{\imath} \pm \hat{\jmath}$$
C
$$-\hat{\imath} \pm \hat{\jmath}$$
D
$$\pm 3 \hat{\imath}+3 \hat{\jmath}$$
4
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { If }|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2=144 ~\&~|\vec{a}|=4 \text { then }|\vec{b}|= $$

A
3
B
12
C
8
D
16
COMEDK Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12