1
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { If } \hat{\imath}+\hat{\jmath}-\hat{k} \quad \&~ 2 \hat{\imath}-3 \hat{\jmath}+\hat{k} \text { are adjacent sides of a parallelogram, then length of its diagonals are } $$

A
$$\sqrt{3}, \quad \sqrt{14}$$
B
$$\sqrt{13}, \sqrt{14}$$
C
$$\sqrt{21}, \quad \sqrt{3}$$
D
$$\sqrt{21}, \quad \sqrt{13}$$
2
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

Find the value of '$$b$$' such that the scalar product of the vector $$\hat{\imath}+\hat{\jmath}+\hat{k}$$ with the unit vector parallel to the sum of the vectors $$2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$$ and $$b \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$$ is unity

A
$$-2$$
B
0
C
$$-1$$
D
1
3
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

Let a, b, c be three vector such that $$a \neq 0$$ and $$\vec{a} \times \vec{b}=2 \vec{a} \times \vec{c},|a|=|c|=1,|b|=4$$ and $$|\vec{b} \times \vec{c}|=\sqrt{15}$$. If $$\vec{b}-2 \vec{c}=\lambda \vec{a}$$ then $$\lambda$$ equals to

A
2
B
1
C
$$-1$$
D
$$-4$$
4
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { The angle between } \hat{\imath}-\hat{\jmath} ~\&~ \hat{\jmath}-\hat{k} \text { is } $$

A
$$ \frac{3 \pi}{4} $$
B
$$ \frac{2 \pi}{3} $$
C
$$ \frac{\pi}{4} $$
D
$$ \frac{\pi}{3} $$
COMEDK Subjects
EXAM MAP