Inverse Trigonometric Functions · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1

$$ \text { Evaluate: } \cot ^{-1}\left(-\frac{3}{\sqrt{3}}\right)-\sec ^{-1}\left(-\frac{2}{\sqrt{2}}\right)-\operatorname{cosec}^{-1}(-1)-\tan ^{-1}(1) $$

COMEDK 2024 Evening Shift
2

$$ \text { The function } f(x)=\tan ^{-1}(\sin x+\cos x) \text { is an increasing function in } $$

COMEDK 2024 Evening Shift
3

$$ \text { Evaluate: } \cos ^{-1}\left(\cos \frac{35 \pi}{18}\right)-\sin ^{-1}\left(\sin \frac{35 \pi}{18}\right) $$

COMEDK 2024 Evening Shift
4

Evaluate :

$$ \operatorname{cosec}^{-1}\left(-\frac{2 \sqrt{3}}{3}\right)+\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)+\sec ^{-1} 2+\cos ^{-1}\left(-\frac{1}{2}\right)-\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

COMEDK 2024 Afternoon Shift
5

$$ \text { If } y=\sin ^{-1}(\sqrt{\sin x}) \text {, then } \frac{d y}{d x} \text { equals } $$

COMEDK 2024 Afternoon Shift
6

$$ \text { If } \alpha=\tan ^{-1}\left(\tan \frac{5 \pi}{4}\right) \text { and } \beta=\tan ^{-1}\left(-\tan \frac{2 \pi}{3}\right) \text { then } $$

COMEDK 2024 Afternoon Shift
7

Evaluate : $$\cos ^{-1}\left[\cos \left(-680^{\circ}\right)\right]+\sin ^{-1}\left[\sin \left(-600^{\circ}\right)\right]-\cos ^{-1}\left(\sin 270^{\circ}\right)$$

COMEDK 2024 Morning Shift
8

$$ \text { The value of } \sin ^{-1}\left[\cot \left(\frac{1}{2} \tan ^{-1} \frac{1}{\sqrt{3}}+\cos ^{-1} \frac{\sqrt{12}}{4}+\sin ^{-1} \frac{1}{\sqrt{2}}\right)\right] $$ is

COMEDK 2024 Morning Shift
9

$$ \text { Let } f(x)=\cos ^{-1}(3 x-1) \text {, then domain of } f(x) \text { is equal to } $$

COMEDK 2023 Evening Shift
10

$$ \text { The value of } \sin ^{-1}\left[\cos \left(39 \frac{\pi}{5}\right)\right] \text { is } $$

COMEDK 2023 Evening Shift
11

The value of $$\sin \left[ {2{{\cos }^{ - 1}}{{\sqrt 5 } \over 3}} \right]$$ is

COMEDK 2020
12

The solution of $${\tan ^{ - 1}}x + 2{\cot ^{ - 1}}x = {{2\pi } \over 3}$$ is

COMEDK 2020
13

If $${\sec ^{ - 1}}\left( {{{1 + x} \over {1 - y}}} \right) = a$$, then $${{dy} \over {dx}}$$ is

COMEDK 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12