# Inverse Trigonometric Functions · Mathematics · COMEDK

Start Practice

COMEDK 2024 Evening Shift
$$\text { Evaluate: } \cot ^{-1}\left(-\frac{3}{\sqrt{3}}\right)-\sec ^{-1}\left(-\frac{2}{\sqrt{2}}\right)-\operatorname{cosec}^{-1}(-1)-\tan ^{-1}(... COMEDK 2024 Evening Shift$$ \text { The function } f(x)=\tan ^{-1}(\sin x+\cos x) \text { is an increasing function in } $$COMEDK 2024 Evening Shift$$ \text { Evaluate: } \cos ^{-1}\left(\cos \frac{35 \pi}{18}\right)-\sin ^{-1}\left(\sin \frac{35 \pi}{18}\right) $$COMEDK 2024 Morning Shift Evaluate :$$\cos ^{-1}\left[\cos \left(-680^{\circ}\right)\right]+\sin ^{-1}\left[\sin \left(-600^{\circ}\right)\right]-\cos ^{-1}\left(\sin 270^{\ci...
COMEDK 2024 Morning Shift
$$\text { The value of } \sin ^{-1}\left[\cot \left(\frac{1}{2} \tan ^{-1} \frac{1}{\sqrt{3}}+\cos ^{-1} \frac{\sqrt{12}}{4}+\sin ^{-1} \frac{1}{\sqr... COMEDK 2023 Evening Shift$$ \text { Let } f(x)=\cos ^{-1}(3 x-1) \text {, then domain of } f(x) \text { is equal to } $$COMEDK 2023 Evening Shift$$ \text { The value of } \sin ^{-1}\left[\cos \left(39 \frac{\pi}{5}\right)\right] \text { is } $$COMEDK 2020 The value of$$\sin \left[ {2{{\cos }^{ - 1}}{{\sqrt 5 } \over 3}} \right]$$is COMEDK 2020 The solution of$${\tan ^{ - 1}}x + 2{\cot ^{ - 1}}x = {{2\pi } \over 3}$$is COMEDK 2020 If$${\sec ^{ - 1}}\left( {{{1 + x} \over {1 - y}}} \right) = a$$, then$${{dy} \over {dx}} is
EXAM MAP
Medical
NEET