Matrices and Determinants · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1

Kiran purchased 3 pencils, 2 notebooks and one pen for ₹41. From the same shop Manasa purchased 2 pencils, one notebook and 2 pens for ₹ 29 , while Shreya purchased 3 pencils, 2 notebooks and 2 pens for ₹ 44. The above situation can be represented in matrix form as $A X=B$. Then $|\operatorname{adj} A|$ is equal to

COMEDK 2025 Evening Shift
2
If $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $Y=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then $B$ equals :
COMEDK 2025 Evening Shift
3
If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $(A I)^2=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$ where I is the identity matrix then
COMEDK 2025 Evening Shift
4
Value of the determinant of a matrix $A$ of order $3 \times 3$ is 7 . Then the value of the determinant formed by the cofactors of matrix A is
COMEDK 2025 Evening Shift
5
If $A=\left[\begin{array}{ccc}4 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{array}\right]$ then $A^{-1}$ exists if :
COMEDK 2025 Evening Shift
6
If $A=\frac{1}{\pi}\left[\begin{array}{cc}\sin ^{-1} \frac{1}{2} & \tan ^{-1} \frac{x}{\pi} \\ \sin ^{-1} \frac{x}{\pi} & \cot ^{-1} \sqrt{3}\end{array}\right] \quad B=\frac{1}{\pi}\left[\begin{array}{cc}-\cos ^{-1} \frac{1}{2} & \tan ^{-1} \frac{x}{\pi} \\ \sin ^{-1} \frac{x}{\pi} & -\tan ^{-1} \sqrt{3}\end{array}\right]$ and I is an identity matrix of order $2 \times 2$, then $A-B=$
COMEDK 2025 Afternoon Shift
7
If $A=\left[\begin{array}{ccc}0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0\end{array}\right]$, then $A+2 A^T=$
COMEDK 2025 Afternoon Shift
8
If $A(\operatorname{adj} A)=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$, then the value of $|A|+|\operatorname{adj} A|$ is equal to :
COMEDK 2025 Afternoon Shift
9

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹ 500 .

The cost of 1 kg onion, 2 kg wheat and 3 kg rice is ₹ 300 .

The cost of 6 kg onion, 2 kg wheat and 3 kg rice is ₹ 575 .

The above situation can be represented in matrix form as $\mathrm{AX}=\mathrm{B}$. Then $\left|5 A^{-1}\right|=$

COMEDK 2025 Afternoon Shift
10
The cofactor of the element $a_{21}$ in the expansion of $\Delta=\left|\begin{array}{ccc}1 & 4 & 4 \\ -3 & 5 & 9 \\ 2 & 1 & 2\end{array}\right|$ is
COMEDK 2025 Afternoon Shift
11
Let $M$ be the set of all $2 \times 2$ matrices with entries from the set R of real numbers. Then the function $f: M \rightarrow R$ defined by $f(A)=|A|$ for every $A \in M$ is
COMEDK 2025 Morning Shift
12
The sum of three numbers is 6 . Twice the third number, when added to the first number gives 7 , On adding the sum of the second and third numbers to thrice the first number, we get 12 . The above situation can be represented in matrix form as $A X=B$. Then the $|\operatorname{adj} A|$ is equal to
COMEDK 2025 Morning Shift
13
If $A(t)=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$ then the product of $A(t)$ and $A(-t)$ is
COMEDK 2025 Morning Shift
14
If $A=\left[\begin{array}{cc}1 & -2 \\ 4 & 5\end{array}\right] ; f(t)=t^2-3 t+7$ then $f(A)+\left[\begin{array}{cc}3 & 6 \\ -12 & -9\end{array}\right]=$
COMEDK 2025 Morning Shift
15
For two matrices $A$ and $B$, given that $A^{-1}=\frac{1}{8} B$ then inverse of $(8 A)$ is
COMEDK 2025 Morning Shift
16
If $A=\left[\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0\end{array}\right]$ then $A^{-1}$
COMEDK 2025 Morning Shift
17

$$ \text { If } 3 A+4 B^t=\left(\begin{array}{ccc} 7 & -10 & 17 \\ 0 & 6 & 31 \end{array}\right) \text { and } 2 B-3 A^t=\left(\begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array}\right) \text { then }(5 B)^t= $$

COMEDK 2024 Evening Shift
18

$$ \text { If } A=\left[\begin{array}{cc} 5 a & -b \\ 3 & 2 \end{array}\right] \text { and } A \operatorname{adj} A=A A^t \text {, then } 5 a+b \text { is equal to } $$

COMEDK 2024 Evening Shift
19

If the matrix $A$ is such that $$A\left(\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right)=\left(\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right)$$ then $$A$$ is equal to

COMEDK 2024 Evening Shift
20

If $$A=\left[\begin{array}{ccc}0 & x & 16 \\ x & 5 & 7 \\ 0 & 9 & x\end{array}\right]$$ is a singular matrix then $$x$$ is equal to

COMEDK 2024 Evening Shift
21

$$ \text { If } A=\left[\begin{array}{cc} 1 & -2 \\ 4 & 5 \end{array}\right] \text { and } f(t)=t^2-3 t+7 \text { then } f(A)+\left[\begin{array}{cc} 3 & 6 \\ -12 & -9 \end{array}\right] \text { is } $$

COMEDK 2024 Afternoon Shift
22

$$ \left|\begin{array}{ccc} \cos (\alpha+\beta) & -\sin (\alpha+\beta) & \cos 2 \beta \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\cos \alpha & \sin \alpha & \cos \beta \end{array}\right| $$ is independent of

COMEDK 2024 Afternoon Shift
23

$$ \text { If A }(\operatorname{adj} A)=5 I \text {, where I is the identity matrix of order } 3 \text {, then }|\operatorname{adj} A|= $$

COMEDK 2024 Afternoon Shift
24

$$ \text { A square matrix } P \text { satisfies } P^2=I-P \text { where } I \text { is identity matrix. If } P^n=5 I-8 P \text {, then } n \text { is equal to } $$

COMEDK 2024 Afternoon Shift
25

If $$A=\left[\begin{array}{lll}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{array}\right] \quad B^{-1}=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$$ then $$(A B)^{-1}$$ is equal to

COMEDK 2024 Afternoon Shift
26

$$ \text { If } P=\left[\begin{array}{lll} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{array}\right] \text { is the adjoint of a } 3 \times 3 \text { matrix } A \text { and }|A|=4 \text { then } \alpha \text { is equal to } $$

COMEDK 2024 Morning Shift
27

If $$A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$ then the inverse of $$(A I)^t$$ (where $$\mathrm{I}$$ is an identity matrix) is

COMEDK 2024 Morning Shift
28

$$ \text { If } x, y, z \text { are non zero real numbers, then inverse of matrix } A=\left[\begin{array}{lll} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{array}\right] \text { is } $$

COMEDK 2024 Morning Shift
29

$$ \text { If the matrix } A=\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right) \text { then } A^{n+1}= $$

COMEDK 2024 Morning Shift
30

If $$ \left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right]=[0] $$ then x is equal to

COMEDK 2024 Morning Shift
31

If $$A=\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]$$, then $$A^{-1}$$ equals to

COMEDK 2023 Morning Shift
32

If $$A$$ is a matrix of order $$4 \operatorname{such}$$ that $$A(\operatorname{adj} A)=10 \mathrm{~I}$$, then $$|\operatorname{adj} A|$$ is equal to

COMEDK 2023 Morning Shift
33

If $$A=\left[\begin{array}{cc}k+1 & 2 \\ 4 & k-1\end{array}\right]$$ is a singular matrix, then possible values of $$\mathrm{k}$$ are

COMEDK 2023 Morning Shift
34

$$ \text { If } A=\left(\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right) \quad P=\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right) \quad Q=P^T A P, \quad \text { then } P Q^{2014} P^T \text { is equal to } $$

COMEDK 2023 Evening Shift
35

$$A$$ and $$B$$ are invertible matrices of the same order such that $$\left|(A B)^{-1}\right|=8$$ if $$|A|=2$$ then $$|B|$$ is

COMEDK 2023 Evening Shift
36

If $$2 A+3 B=\left[\begin{array}{ccc}2 & -1 & 4 \\ 3 & 2 & 5\end{array}\right]$$ and $$A+2 B=\left[\begin{array}{lll}5 & 0 & 3 \\ 1 & 6 & 2\end{array}\right]$$ then $$B=$$

COMEDK 2023 Evening Shift
37

If $$\left[\begin{array}{ccc}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right]$$ is a singular matrix, then $$x$$ is

COMEDK 2023 Evening Shift
38

Solution of $$x-y+z=4 ; x-2 y+2 z=9$$ and $$2 x+y+3 z=1$$ is

COMEDK 2023 Evening Shift
39

If for any 2 $$\times$$ 2 square matrix A,

A (adj A) = $$\left[ {\matrix{ 8 & 0 \cr 0 & 8 \cr } } \right]$$, then find the value of det (A).

COMEDK 2022
40

If $$A = \left[ {\matrix{ a & 0 & 0 \cr 0 & a & 0 \cr 0 & 0 & a \cr } } \right]$$, then $$|A||adj\,A|$$ is equal to

COMEDK 2022
41

If $$A = \left[ {\matrix{ {2 - k} & 2 \cr 1 & {3 - k} \cr } } \right]$$ is a singular matrix, then the value of $$5k - {k^2}$$ is

COMEDK 2022
42

If for any 2 $$\times$$ 2 square matrix A, A (adj A) = $$\left[ {\matrix{ 8 & 0 \cr 0 & 8 \cr } } \right]$$, then the value of det (A).

COMEDK 2021
43

If matrix $$A = \left[ {\matrix{ 2 & { - 2} \cr { - 2} & 2 \cr } } \right]$$ and $${A^2} = pA$$, then the value of $$p$$ is

COMEDK 2021
44

If $$A\,(adj\,A) = \left[ {\matrix{ { - 2} & 0 & 0 \cr 0 & { - 2} & 0 \cr 0 & 0 & { - 2} \cr } } \right]$$, then $$|adj\,A|$$ equals

COMEDK 2021
45

If $$A = \left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right],10B = \left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$ and B is the inverse of A, then the value of $$\alpha$$ is

COMEDK 2020
46

If $$A = \left[ {\matrix{ 0 & x & {16} \cr x & 5 & 7 \cr 0 & 9 & x \cr } } \right]$$ is singular, then the possible values of x are

COMEDK 2020
47

If $$A = \left[ {\matrix{ 1 & { - 2} & 2 \cr 0 & 2 & { - 3} \cr 3 & { - 2} & 4 \cr } } \right]$$, then A . adj (A) is equal to

COMEDK 2020
48

The value of $$\left| {\matrix{ x & p & q \cr p & x & q \cr p & q & x \cr } } \right|$$ is

COMEDK 2020
EXAM MAP