Matrices and Determinants · Mathematics · COMEDK
MCQ (Single Correct Answer)
$$ \text { If } 3 A+4 B^t=\left(\begin{array}{ccc} 7 & -10 & 17 \\ 0 & 6 & 31 \end{array}\right) \text { and } 2 B-3 A^t=\left(\begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array}\right) \text { then }(5 B)^t= $$
$$ \text { If } A=\left[\begin{array}{cc} 5 a & -b \\ 3 & 2 \end{array}\right] \text { and } A \operatorname{adj} A=A A^t \text {, then } 5 a+b \text { is equal to } $$
If the matrix $A$ is such that $$A\left(\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right)=\left(\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right)$$ then $$A$$ is equal to
If $$A=\left[\begin{array}{ccc}0 & x & 16 \\ x & 5 & 7 \\ 0 & 9 & x\end{array}\right]$$ is a singular matrix then $$x$$ is equal to
$$ \text { If } P=\left[\begin{array}{lll} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{array}\right] \text { is the adjoint of a } 3 \times 3 \text { matrix } A \text { and }|A|=4 \text { then } \alpha \text { is equal to } $$
If $$A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$ then the inverse of $$(A I)^t$$ (where $$\mathrm{I}$$ is an identity matrix) is
$$ \text { If } x, y, z \text { are non zero real numbers, then inverse of matrix } A=\left[\begin{array}{lll} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{array}\right] \text { is } $$
$$ \text { If the matrix } A=\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right) \text { then } A^{n+1}= $$
If $$ \left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right]=[0] $$ then x is equal to
If $$A=\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]$$, then $$A^{-1}$$ equals to
If $$A$$ is a matrix of order $$4 \operatorname{such}$$ that $$A(\operatorname{adj} A)=10 \mathrm{~I}$$, then $$|\operatorname{adj} A|$$ is equal to
If $$A=\left[\begin{array}{cc}k+1 & 2 \\ 4 & k-1\end{array}\right]$$ is a singular matrix, then possible values of $$\mathrm{k}$$ are
$$ \text { If } A=\left(\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right) \quad P=\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right) \quad Q=P^T A P, \quad \text { then } P Q^{2014} P^T \text { is equal to } $$
$$A$$ and $$B$$ are invertible matrices of the same order such that $$\left|(A B)^{-1}\right|=8$$ if $$|A|=2$$ then $$|B|$$ is
If $$2 A+3 B=\left[\begin{array}{ccc}2 & -1 & 4 \\ 3 & 2 & 5\end{array}\right]$$ and $$A+2 B=\left[\begin{array}{lll}5 & 0 & 3 \\ 1 & 6 & 2\end{array}\right]$$ then $$B=$$
If $$\left[\begin{array}{ccc}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right]$$ is a singular matrix, then $$x$$ is
Solution of $$x-y+z=4 ; x-2 y+2 z=9$$ and $$2 x+y+3 z=1$$ is
If for any 2 $$\times$$ 2 square matrix A,
A (adj A) = $$\left[ {\matrix{ 8 & 0 \cr 0 & 8 \cr } } \right]$$, then find the value of det (A).
If $$A = \left[ {\matrix{ a & 0 & 0 \cr 0 & a & 0 \cr 0 & 0 & a \cr } } \right]$$, then $$|A||adj\,A|$$ is equal to
If $$A = \left[ {\matrix{ {2 - k} & 2 \cr 1 & {3 - k} \cr } } \right]$$ is a singular matrix, then the value of $$5k - {k^2}$$ is
If for any 2 $$\times$$ 2 square matrix A, A (adj A) = $$\left[ {\matrix{ 8 & 0 \cr 0 & 8 \cr } } \right]$$, then the value of det (A).
If matrix $$A = \left[ {\matrix{ 2 & { - 2} \cr { - 2} & 2 \cr } } \right]$$ and $${A^2} = pA$$, then the value of $$p$$ is
If $$A\,(adj\,A) = \left[ {\matrix{ { - 2} & 0 & 0 \cr 0 & { - 2} & 0 \cr 0 & 0 & { - 2} \cr } } \right]$$, then $$|adj\,A|$$ equals
If $$A = \left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right],10B = \left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$ and B is the inverse of A, then the value of $$\alpha$$ is
If $$A = \left[ {\matrix{ 0 & x & {16} \cr x & 5 & 7 \cr 0 & 9 & x \cr } } \right]$$ is singular, then the possible values of x are
If $$A = \left[ {\matrix{ 1 & { - 2} & 2 \cr 0 & 2 & { - 3} \cr 3 & { - 2} & 4 \cr } } \right]$$, then A . adj (A) is equal to
The value of $$\left| {\matrix{ x & p & q \cr p & x & q \cr p & q & x \cr } } \right|$$ is