1
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

Let a, b, c be three vector such that $$a \neq 0$$ and $$\vec{a} \times \vec{b}=2 \vec{a} \times \vec{c},|a|=|c|=1,|b|=4$$ and $$|\vec{b} \times \vec{c}|=\sqrt{15}$$. If $$\vec{b}-2 \vec{c}=\lambda \vec{a}$$ then $$\lambda$$ equals to

A
2
B
1
C
$$-1$$
D
$$-4$$
2
COMEDK 2024 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { The angle between } \hat{\imath}-\hat{\jmath} ~\&~ \hat{\jmath}-\hat{k} \text { is } $$

A
$$ \frac{3 \pi}{4} $$
B
$$ \frac{2 \pi}{3} $$
C
$$ \frac{\pi}{4} $$
D
$$ \frac{\pi}{3} $$
3
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

The vector $$(\vec{r})$$ whose magnitude is $$3 \sqrt{2}$$ units which makes an angle of $$\frac{\pi}{4}$$ and $$\frac{\pi}{2}$$ with $$y$$ and $$z$$- axis respectively is

A
$$\hat{\imath} \pm 3 \hat{\jmath}$$
B
$$\hat{\imath} \pm \hat{\jmath}$$
C
$$-\hat{\imath} \pm \hat{\jmath}$$
D
$$\pm 3 \hat{\imath}+3 \hat{\jmath}$$
4
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { If }|\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2=144 ~\&~|\vec{a}|=4 \text { then }|\vec{b}|= $$

A
3
B
12
C
8
D
16
COMEDK Subjects
EXAM MAP