Trigonometric Ratios & Identities · Mathematics · COMEDK
Start PracticeMCQ (Single Correct Answer)
COMEDK 2024 Evening Shift
$$
\text { If } \frac{\cos x}{\cos (x-2 y)}=\lambda \text { then } \tan (x-y) \tan y=
$$
COMEDK 2024 Evening Shift
$$
\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 8 \theta}}} \text { where } \theta \in\left[-\frac{\pi}{8}, \frac{\pi}{8}\right] \text { is equal to }
$$
COMEDK 2024 Evening Shift
$$
\text { Value of } \cos 105^{\circ} \text { is }
$$
COMEDK 2024 Morning Shift
If $$\cos \theta=\frac{1}{2}\left(x+\frac{1}{x}\right)$$ then $$\frac{1}{2}\left(x^2+\frac{1}{x^2}\right)=$$
COMEDK 2024 Morning Shift
$$4\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right) \text { ...
COMEDK 2024 Morning Shift
$$
\text { If } \sin A=\frac{4}{5} \text { and } \cos B=\frac{-12}{13} \text { where } A \text { and } B \text { lie in first and third quadrant respe...
COMEDK 2023 Morning Shift
If $$\cos A=m \cos B$$ and $$\cot \left(\frac{A+B}{2}\right)=\lambda \tan \left(\frac{B-A}{2}\right)$$, then $$\lambda$$ is equal to
COMEDK 2023 Morning Shift
The expression $$\frac{2 \tan A}{1-\cot A}+\frac{2 \cot A}{1-\tan A}$$ can be written as
COMEDK 2023 Evening Shift
$$
\cos ^6 A-\sin ^6 A \text { is equal to }
$$
COMEDK 2023 Evening Shift
$$
\text { If } \operatorname{cosec}(90+A)+x \cos A \cot (90+A)=\sin (90+A) \text { then the value of } x \text { is }
$$
COMEDK 2023 Evening Shift
If $$\cos \alpha=k \cos \beta$$ then $$\cot \left(\frac{\alpha+\beta}{2}\right)$$ is equal to
COMEDK 2022
If $$\sin A+\sin B=a$$ and $$\cos A+\cos B=b$$, then $$\cos (A+B)$$ equals?
COMEDK 2022
What is $${{\cos \theta } \over {1 - \tan \theta }} + {{\sin \theta } \over {1 - \cot \theta }}$$ equal to?
COMEDK 2021
If x and y are acute angles, such that $$\cos x + \cos y = {3 \over 2}$$ and $$\sin x + \sin y = {3 \over 4}$$, then $$\sin (x + y)$$ equals
COMEDK 2021
The expression $${{\tan A} \over {1 - \cot A}} + {{\cot A} \over {1 - \tan A}}$$ can be written as
COMEDK 2020
$${\sin ^2}17.5^\circ + \sin 72.5^\circ $$ is equal to