1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
The solution for the following system of inequalities $3 x-7<5+x$ and $11-5 x \leq 1$ on a real number line is
A
COMEDK 2025 Evening Shift Mathematics - Linear Programming Question 1 English Option 1
B
COMEDK 2025 Evening Shift Mathematics - Linear Programming Question 1 English Option 2
C
COMEDK 2025 Evening Shift Mathematics - Linear Programming Question 1 English Option 3
D
COMEDK 2025 Evening Shift Mathematics - Linear Programming Question 1 English Option 4
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
Given $Z=80 x+120 y$, subject to constraints are $x+3 y \leq 30 ; 3 x+4 y \leq 60 ; x \geq 0 ; y \geq 0$. P is one of the corner points of the feasible region for the given Linear Programming Problem. Then the coordinate of $P$ is
A
$(0,15)$
B
$(20,0)$
C
$(6,12)$
D
$(30,0)$
3
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
The corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$ and $(3,0)$, If objective function is $Z=p x+q y, p, q>0$ then the condition on $p$ and $q$ so that the minimum of $Z$ occurs at $(3,0)$ and $(1,1)$ is
A
$p=3 q$
B
$3 p=q$
C
$p=\frac{q}{2}$
D
$p=2 q$
4
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0

For a given Linear Programming problem, the objective function is

$$z=3 x+2 y$$

Subject to constraints are

$$\begin{aligned} & 4 x+3 y \leq 60 \\ & x \geq 3 \\ & y \leq 2 x \\ & y \geq 0 \end{aligned}$$

P is one of the corner points of the feasible region for the given Linear Programming problem. Then the coordinate of P is

A
$(3,6)$
B
$(0,20)$
C
$(0,0)$
D
$(12,6)$
COMEDK Subjects
EXAM MAP