Electromagnetic Induction · Physics · COMEDK
MCQ (Single Correct Answer)
A conducting circular loop is placed in a uniform magnetic field $$\mathrm{B}=0.125 \mathrm{~T}$$ with its plane perpendicular to the loop. If the radius of the loop is made to shrink at a constant rate of $$2 \mathrm{~mm} \mathrm{~s}^{-1}$$, then the induced emf when the radius is $$4 \mathrm{~cm}$$ is
A transformer of $$100 \%$$ efficiency has 200 turns in the primary and 40000 turns in the secondary. It is connected to a $$220 \mathrm{~V}$$ main supply and secondary feeds to a $$100 \mathrm{~K} \Omega$$ resistance. The potential difference per turn is
The current in a coil changes steadily from $$3 \mathrm{~A}$$ to $$5 \mathrm{~A}$$ in $$0.2 \mathrm{~s}$$ when an emf of $$2 \mu \mathrm{V}$$ is induced in it. The self-inductance of the coil is
The magnetic flux linked with a coil is given by the equation: $$\phi=8 t^2+t+10$$. The e.m.f. induced in the coil in the $$3^{\text {rd }}$$ second will be
A wire ' 1 ' $$\mathrm{cm}$$ long bent into a circular loop is placed perpendicular to the magnetic field of flux density '$$B^{\prime} W b \mathrm{~m}^{-2}$$. Within $$0.1 \mathrm{sec}$$, the loop is changed into a square of side '$$a$$' $$\mathrm{cm}$$ and flux density is doubled. The value of e.m.f. induced is
In an inductor of self-inductance $$2 \mathrm{~mH}$$, current changes with time (in sec) according to the relation, $$I=(3 t^2-3 t+8) A$$. The emf becomes zero at
A metallic rod of length '$$a$$' is rotated with an angular frequency of $$0.2 \mathrm{~rads}^{-1}$$ about an axis normal to the rod passing through its one end. A constant and uniform magnetic field of '$$\mathrm{B}$$' T parallel to the axis exists everywhere. The emf developed across the ends of the rod is
Select the unit of the coefficient of mutual induction from the following.
Around the central part of an air cored solenoid of length $$20 \mathrm{~cm}$$ and area of cross section $$1.4 \times 10^{-3} \mathrm{~m}^2$$ and 3000 turns, another coil of 250 turns is closely wound. A current $$2 \mathrm{~A}$$ in the solenoid is reversed in $$0.2 \mathrm{~s}$$, then the induced emf produced is
A metallic rod of $$2 \mathrm{~m}$$ length is rotated with a frequency $$100 \mathrm{~Hz}$$ about an axis passing through the centre of the circular ring of radius $$2 \mathrm{~m}$$. A constant magnetic field $$2 \mathrm{~T}$$ is applied parallel to the axis and perpendicular to the length of the rod. The emf developed across the ends of the rod is :
The magnetic flux linked with a coil satisfies the relation $$\phi=\left(4 t^2+6 t+9\right) \mathrm{Wb}$$, where $$t$$ is time in second. The emf induced in the coil at $$t=2 \mathrm{~s}$$ is
One volt induced emf is produced in the secondary coil when the current through the primary coil is changed from $$3 \mathrm{~A}$$ to $$1 \mathrm{~A}$$ in 100 milliseconds. the mutual inductance of the two coil is:
Television frequencies are of the order of 100 MHz, while radio frequencies are of the order of 1 MHz. Using these as typical frequencies, the ratio of the emf generated in a loop antenna by a television wave to that generated by a radio wave, if both have equal electric field intensities.
A circular coil of 20 turns and radius 10 cm is placed in a uniform magnetic field of 0.10 T normal to the plane of the coil. If the current in the coil is 5 A, then the average force on each electron in the coil due to the magnetic field is
A coil of wire of a certain radius has 100 turns and a self inductance of 15 mH. The self inductance of a second similar coil of 500 turns will be
A coil of 100 turns carries a current of 5 mA and creates a magnetic flux of 10$$^{-5}$$ Wb. The inductance is
In step-up transformer, relation between number of turns in primary (N$$_P$$) and number of turns in secondary (N$$_S$$) coils is