Complex Numbers · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

COMEDK 2024 Evening Shift
$$ \text { If }(1-4 i)^3=a+i b \text { then the value of } \mathrm{a} \text { and } \mathrm{b} \text { is } $$
COMEDK 2024 Morning Shift
$$ \text { The modulus of the following complex number } \frac{1+i}{1-i}-\frac{1-i}{1+i} \text { is } $$
COMEDK 2023 Morning Shift
If $$z=\sqrt{3}+i$$, then the argument of $$z^2 e^{z-i}$$ is equal to
COMEDK 2023 Morning Shift
If $$i=\sqrt{-1}$$ and $$n$$ is a positive integer, then $$i^n+i^{n+1}+i^{n+2}+i^{n+3}$$ is equal to
COMEDK 2023 Morning Shift
If $$\left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=3^{25}(x+i y)$$, where $$x$$ and $$y$$ are real, then the ordered pair $$(2 x, 2 y)$$ is...
COMEDK 2023 Evening Shift
If the conjugate of $$(x+i y)(1-2 i)$$ be $$1+i$$, then
COMEDK 2022
The argument of $${{1 - i\sqrt 3 } \over {1 + i\sqrt 3 }}$$ is
COMEDK 2022
Evaluate $${\left[ {{i^{22}} + {{\left( {{1 \over i}} \right)}^{25}}} \right]^3}$$
COMEDK 2022
$${(i + \sqrt 3 )^{100}} + {(i - \sqrt 3 )^{100}} + {2^{100}}$$ is equal to
COMEDK 2021
What is the argument of the complex number $${{(1 + i)(2 + i)} \over {3 - i}}$$, where $$i = \sqrt { - 1} $$ ?
COMEDK 2021
Evaluate $${\left[ {{i^{18}} + {{\left( {{1 \over i}} \right)}^{25}}} \right]^3}$$.
COMEDK 2021
If $${(\sqrt 3 + i)^{100}} = {2^{99}}(a + ib)$$, then $${a^2} + {b^2}$$ is equal to
COMEDK 2020
The conjugate of the complex number $${{{{(1 + i)}^2}} \over {1 - i}}$$ is
COMEDK 2020
The imaginary part of $$i^i$$ is
COMEDK 2020
The amplitude of $${(1 + i)^5}$$ is
COMEDK 2020
If $$1,\omega ,{\omega ^2}$$ are the cube roots of unity, then $$(1 + \omega )(1 + {\omega ^2})(1 + {\omega ^4})(1 + {\omega ^8})$$ is equal to
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12