Differentiation · Mathematics · COMEDK
Start PracticeMCQ (Single Correct Answer)
COMEDK 2024 Evening Shift
$$
\text { If } y=f(x), \quad p=\frac{d y}{d x} ; q=\frac{d^2 y}{d x^2} \text { then } \frac{d^2 x}{d y^2} \text { is equal to }
$$
COMEDK 2024 Evening Shift
$$
\text { If } y=\sqrt{\sin x+y} \text { then find } \frac{d y}{d x} \text { at } x=0, \quad y=1
$$
COMEDK 2024 Evening Shift
$$
\text { If } y=\sin ^{-1}\left(\frac{5 x+12 \sqrt{1-x^2}}{13}\right) \text { then } \frac{d y}{d x} \text { equals }
$$
COMEDK 2024 Morning Shift
If $$f(x)=f^{\prime}(x)$$ and $$f(1)=2$$, then $$f(3)$$ is
COMEDK 2024 Morning Shift
$$
\text { If } y=\log _e\left(\frac{x^2}{e^2}\right) \text {, then } \frac{d^2 y}{d x^2} \text { is equal to }
$$
COMEDK 2024 Morning Shift
$$
\text { If } y=\tan ^{-1}\left(\frac{3-2 x}{1+6 x}\right) \text { then } \frac{d y}{d x} \text { is }
$$
COMEDK 2024 Morning Shift
$$
\text { If } \sin y=x(\cos (a+y)) \text {, then find } \frac{d y}{d x} \text { when } x=0
$$
COMEDK 2023 Morning Shift
The approximate value of $$f(5.001)$$, where $$f(x)=x^3-7 x^2+10$$
COMEDK 2023 Evening Shift
$$
\text { If } f(x)=\sin ^{-1}\left(\frac{2^{x+1}}{1+4^x}\right) \text { then } f^{\prime}(0) \text { is equal to }
$$
COMEDK 2023 Evening Shift
If $$f(x)=\frac{(x+1)^7 \sqrt{1+x^2}}{\left(x^2-x+1\right)^6}$$ then the value of $$f^{\prime}(0)$$ is equal to
COMEDK 2021
The equation of normal to the curve $$y = {(1 + x)^y} + {\sin ^{ - 1}}({\sin ^2}x)$$ at $$x = 0$$ is
COMEDK 2020
If $$y = {2^{\log x}}$$, then $${{dy} \over {dx}}$$ is
COMEDK 2020
If $$y = {\cos ^2}{{3x} \over 2} - {\sin ^2}{{3x} \over 2}$$, then $${{{d^2}y} \over {d{x^2}}}$$ is
COMEDK 2020
If $${x^x} = {y^y}$$, then $${{dy} \over {dx}}$$ is