Differentiation · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1
If $x=a\left[\left\{\cos t+\frac{1}{2} \log \left(\tan ^2 \frac{t}{2}\right)\right\}\right]$ and $y=a \sin t$ then $\frac{d y}{d x}=$
COMEDK 2025 Evening Shift
2
If $y=x+e^x$ then $\frac{d^2 x}{d y^2}=$
COMEDK 2025 Evening Shift
3
If $ 2 y=\left[\cot ^{-1}\left(\frac{\sqrt{3} \cos x+\sin x}{\cos x-\sqrt{3} \sin x}\right)\right]^2 \forall x \in\left(0, \frac{\pi}{2}\right)$ then $\frac{d y}{d x}$ is equal to :
COMEDK 2025 Afternoon Shift
4

If $y=\left(\sin ^{-1} x\right)^2+\left(\cos ^{-1} x\right)^2$,

then $\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}=$

COMEDK 2025 Afternoon Shift
5
Differentiate $\log _a x$ with respect to $a^x$
COMEDK 2025 Afternoon Shift
6
If $f(x)=\left(\frac{3+x}{1+x}\right)^{2+3 x}$, then $f^{\prime}(0)=$
COMEDK 2025 Morning Shift
7
If $y=\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}, \quad$ then $2 x y \frac{d y}{d x}$ is equal to
COMEDK 2025 Morning Shift
8
If $y=\sin ^{-1}\left(\frac{1}{\sqrt{x+1}}\right)$ then $\frac{d y}{d x}=$
COMEDK 2025 Morning Shift
9

$$ \text { If } y=f(x), \quad p=\frac{d y}{d x} ; q=\frac{d^2 y}{d x^2} \text { then } \frac{d^2 x}{d y^2} \text { is equal to } $$

COMEDK 2024 Evening Shift
10

$$ \text { If } y=\sqrt{\sin x+y} \text { then find } \frac{d y}{d x} \text { at } x=0, \quad y=1 $$

COMEDK 2024 Evening Shift
11

$$ \text { If } y=\sin ^{-1}\left(\frac{5 x+12 \sqrt{1-x^2}}{13}\right) \text { then } \frac{d y}{d x} \text { equals } $$

COMEDK 2024 Evening Shift
12

$$ \text { If } x^2+y^2=t+\frac{1}{t} \text { and } x^4+y^4=t^2+\frac{1}{t^2} \text { then } \frac{d y}{d x}= $$

COMEDK 2024 Afternoon Shift
13

If $$f(x)=f^{\prime}(x)$$ and $$f(1)=2$$, then $$f(3)$$ is

COMEDK 2024 Morning Shift
14

$$ \text { If } y=\log _e\left(\frac{x^2}{e^2}\right) \text {, then } \frac{d^2 y}{d x^2} \text { is equal to } $$

COMEDK 2024 Morning Shift
15

$$ \text { If } y=\tan ^{-1}\left(\frac{3-2 x}{1+6 x}\right) \text { then } \frac{d y}{d x} \text { is } $$

COMEDK 2024 Morning Shift
16

$$ \text { If } \sin y=x(\cos (a+y)) \text {, then find } \frac{d y}{d x} \text { when } x=0 $$

COMEDK 2024 Morning Shift
17

The approximate value of $$f(5.001)$$, where $$f(x)=x^3-7 x^2+10$$

COMEDK 2023 Morning Shift
18

$$ \text { If } f(x)=\sin ^{-1}\left(\frac{2^{x+1}}{1+4^x}\right) \text { then } f^{\prime}(0) \text { is equal to } $$

COMEDK 2023 Evening Shift
19

If $$f(x)=\frac{(x+1)^7 \sqrt{1+x^2}}{\left(x^2-x+1\right)^6}$$ then the value of $$f^{\prime}(0)$$ is equal to

COMEDK 2023 Evening Shift
20

The equation of normal to the curve $$y = {(1 + x)^y} + {\sin ^{ - 1}}({\sin ^2}x)$$ at $$x = 0$$ is

COMEDK 2021
21

If $$y = {2^{\log x}}$$, then $${{dy} \over {dx}}$$ is

COMEDK 2020
22

If $$y = {\cos ^2}{{3x} \over 2} - {\sin ^2}{{3x} \over 2}$$, then $${{{d^2}y} \over {d{x^2}}}$$ is

COMEDK 2020
23

If $${x^x} = {y^y}$$, then $${{dy} \over {dx}}$$ is

COMEDK 2020
EXAM MAP