Differentiation · Mathematics · COMEDK

Start Practice

MCQ (Single Correct Answer)

1
If $x=a\left[\left\{\cos t+\frac{1}{2} \log \left(\tan ^2 \frac{t}{2}\right)\right\}\right]$ and $y=a \sin t$ then $\frac{d y}{d x}=$
COMEDK 2025 Evening Shift
2
If $y=x+e^x$ then $\frac{d^2 x}{d y^2}=$
COMEDK 2025 Evening Shift
3
If $ 2 y=\left[\cot ^{-1}\left(\frac{\sqrt{3} \cos x+\sin x}{\cos x-\sqrt{3} \sin x}\right)\right]^2 \forall x \in\left(0, \frac{\pi}{2}\right)$ then $\frac{d y}{d x}$ is equal to :
COMEDK 2025 Afternoon Shift
4

If $y=\left(\sin ^{-1} x\right)^2+\left(\cos ^{-1} x\right)^2$,

then $\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}=$

COMEDK 2025 Afternoon Shift
5
Differentiate $\log _a x$ with respect to $a^x$
COMEDK 2025 Afternoon Shift
6
If $f(x)=\left(\frac{3+x}{1+x}\right)^{2+3 x}$, then $f^{\prime}(0)=$
COMEDK 2025 Morning Shift
7
If $y=\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}, \quad$ then $2 x y \frac{d y}{d x}$ is equal to
COMEDK 2025 Morning Shift
8
If $y=\sin ^{-1}\left(\frac{1}{\sqrt{x+1}}\right)$ then $\frac{d y}{d x}=$
COMEDK 2025 Morning Shift
9

$$ \text { If } y=f(x), \quad p=\frac{d y}{d x} ; q=\frac{d^2 y}{d x^2} \text { then } \frac{d^2 x}{d y^2} \text { is equal to } $$

COMEDK 2024 Evening Shift
10

$$ \text { If } y=\sqrt{\sin x+y} \text { then find } \frac{d y}{d x} \text { at } x=0, \quad y=1 $$

COMEDK 2024 Evening Shift
11

$$ \text { If } y=\sin ^{-1}\left(\frac{5 x+12 \sqrt{1-x^2}}{13}\right) \text { then } \frac{d y}{d x} \text { equals } $$

COMEDK 2024 Evening Shift
12

$$ \text { If } x^2+y^2=t+\frac{1}{t} \text { and } x^4+y^4=t^2+\frac{1}{t^2} \text { then } \frac{d y}{d x}= $$

COMEDK 2024 Afternoon Shift
13

If $$f(x)=f^{\prime}(x)$$ and $$f(1)=2$$, then $$f(3)$$ is

COMEDK 2024 Morning Shift
14

$$ \text { If } y=\log _e\left(\frac{x^2}{e^2}\right) \text {, then } \frac{d^2 y}{d x^2} \text { is equal to } $$

COMEDK 2024 Morning Shift
15

$$ \text { If } y=\tan ^{-1}\left(\frac{3-2 x}{1+6 x}\right) \text { then } \frac{d y}{d x} \text { is } $$

COMEDK 2024 Morning Shift
16

$$ \text { If } \sin y=x(\cos (a+y)) \text {, then find } \frac{d y}{d x} \text { when } x=0 $$

COMEDK 2024 Morning Shift
17

The approximate value of $$f(5.001)$$, where $$f(x)=x^3-7 x^2+10$$

COMEDK 2023 Morning Shift
18

$$ \text { If } f(x)=\sin ^{-1}\left(\frac{2^{x+1}}{1+4^x}\right) \text { then } f^{\prime}(0) \text { is equal to } $$

COMEDK 2023 Evening Shift
19

If $$f(x)=\frac{(x+1)^7 \sqrt{1+x^2}}{\left(x^2-x+1\right)^6}$$ then the value of $$f^{\prime}(0)$$ is equal to

COMEDK 2023 Evening Shift
20

The equation of normal to the curve $$y = {(1 + x)^y} + {\sin ^{ - 1}}({\sin ^2}x)$$ at $$x = 0$$ is

COMEDK 2021
21

If $$y = {2^{\log x}}$$, then $${{dy} \over {dx}}$$ is

COMEDK 2020
22

If $$y = {\cos ^2}{{3x} \over 2} - {\sin ^2}{{3x} \over 2}$$, then $${{{d^2}y} \over {d{x^2}}}$$ is

COMEDK 2020
23

If $${x^x} = {y^y}$$, then $${{dy} \over {dx}}$$ is

COMEDK 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12