1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $x=a\left[\left\{\cos t+\frac{1}{2} \log \left(\tan ^2 \frac{t}{2}\right)\right\}\right]$ and $y=a \sin t$ then $\frac{d y}{d x}=$
A
$\frac{a^2 \cos ^3 t}{\sin t}$
B
$\tan t$
C
a $\tan t \sec t$
D
$\sec ^2 t$
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $y=x+e^x$ then $\frac{d^2 x}{d y^2}=$
A
$e^x$
B
$\frac{-e^x}{\left(1+e^x\right)^2}$
C
$\frac{-e^x}{\left(1+e^x\right)^3}$
D
$\frac{-1}{\left(1+e^x\right)^3}$
3
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
If $ 2 y=\left[\cot ^{-1}\left(\frac{\sqrt{3} \cos x+\sin x}{\cos x-\sqrt{3} \sin x}\right)\right]^2 \forall x \in\left(0, \frac{\pi}{2}\right)$ then $\frac{d y}{d x}$ is equal to :
A
$x-\frac{\pi}{6}$
B
$2 x-\frac{\pi}{3}$
C
$\frac{\pi}{6}-x$
D
$\frac{\pi}{3}-x$
4
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0

If $y=\left(\sin ^{-1} x\right)^2+\left(\cos ^{-1} x\right)^2$,

then $\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}=$

A
2
B
3
C
0
D
4
COMEDK Subjects
EXAM MAP