1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
The solution of the differential equation: $x \cos y d y=\left(x e^x \log x+e^x\right) d x$ is
A
$\sin y-e^x \log x=c$
B
$\sin y=e^x \log x+c$
C
$\sin y=e^x+\log x+c$
D
$\sin y=\frac{e^x}{x}+c$
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
The number of solutions of $\frac{d y}{d x}=\frac{y+1}{x-1}$, when $y(1)=2$ is :
A
two
B
one
C
zero
D
infinite
3
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
Find the function ' $f$ ' which satisfies the equation $\frac{d f}{d x}=2 f$, given that $f(0)=e^3$
A
$2 x+3$
B
$\log (2 x+3)$
C
$e^{2 x+3}$
D
$\frac{x^2}{2}$
4
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
Solve the following differential equation $\cos ^2 x \frac{d y}{d x}+y=\tan x$, given that $y(0)=1$. Hence find $y\left(\frac{\pi}{4}\right)$
A
2
B
$\frac{2}{e}$
C
e
D
1
COMEDK Subjects
EXAM MAP