Calculate the time required for reactant to decrease the concentration from $100 \%$ to $20 \%$, if rate constant of first order reaction is 0.02303 hours $^{-1}$.
What is the rate of formation of $\mathrm{O}_2$ for the reaction stated below?
$$\begin{aligned} & 2 \mathrm{~N}_2 \mathrm{O}_{5(8)} \longrightarrow 4 \mathrm{NO}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})} \\ & {\left[\frac{\mathrm{d}\left[\mathrm{~N}_2 \mathrm{O}_5\right]}{\mathrm{dt}}=0.02 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right]} \end{aligned}$$
Rate law for the reaction $2 \mathrm{NO}+\mathrm{Cl}_2 \rightarrow 2 \mathrm{NOCl}$ is rate $=\mathrm{k}[\mathrm{NO}]^2\left[\mathrm{Cl}_2\right]$. When will the value of k increase?
Calculate the rate constant of the first order reaction if $$80 \%$$ of the reactant decomposes in 60 minutes.