1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

If concentration of reactant '$$A$$' is increased by 10 times the rate of reaction becomes 100 times. What is the order of reaction, if rate law is, rate $$=k[A]^x$$ ?

A
3
B
2
C
4
D
1
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

A first order reaction has rate constant $$1 \times 10^{-2} \mathrm{~s}^{-1}$$. What time will, it take for $$20 \mathrm{~g}$$ or reactant to reduce to $$5 \mathrm{~g}$$ ?

A
693.0 s
B
138.6 s
C
238.6 s
D
346.5 s
3
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The integrated rate equation for first order reaction, $A \rightarrow$ product, is

A
$k=\frac{1}{t} \ln \frac{[A]_t}{[A]_0}$
B
$k=\frac{2303}{t}+\log _{10} \frac{[A]_0}{[A]_t}$
C
$k=-\frac{1}{t} \ln \frac{[A]_t}{[A]_0}$
D
$k=2303 t \log _{10} \frac{[A]_0}{[A]_t}$
4
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

For the elementary reaction, $3 \mathrm{H}_2(g)+\mathrm{N}_2(g) \longrightarrow 2 \mathrm{NH}_3(g)$ identify the correct relation among the following relations:

A
$\frac{-3}{2} \frac{d\left[\mathrm{H}_2(\mathrm{~g})\right]}{d t}=\frac{d\left[\mathrm{NH}_3(\mathrm{~g})\right]}{d t}$
B
$\frac{-2}{3} \frac{d\left[\mathrm{H}_2(\mathrm{~g})\right]}{d t}=\frac{d\left[\mathrm{NH}_3(\mathrm{~g})\right]}{\mathrm{dt}}$
C
$\frac{d\left[\mathrm{NH}_3(g)\right]}{d t}=\frac{-1}{3} \frac{d\left[H_2(g)\right]}{d t}$
D
$\frac{-d\left[H_2(g)\right]}{d t}=\frac{d\left[\mathrm{NH}_3(g)\right]}{d t}$
MHT CET Subjects
EXAM MAP