What is the value of rate constant for first order reaction if slope for the graph of rate versus concentration is $$2.5 \times 10^{-3}$$ ?
The rate law for the reaction $$\mathrm{A}+\mathrm{B} \rightarrow$$ product is rate $$=\mathrm{k}[\mathrm{A}][\mathrm{B}]$$. When will the rate of reaction increase by factor two?
Find the rate law for the reaction, $$\mathrm{CHCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CCl}_{4(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})}$$ if order of reaction with respect to $$\mathrm{CHCl}_{\mathrm{a}(\mathrm{g})}$$ is one and $$\frac{1}{2}$$ with $$\mathrm{Cl}_{2(\mathrm{~g})}$$.
The rate for reaction $$2 \mathrm{~A}+\mathrm{B} \rightarrow$$ product is $$6 \times 10^{-4} \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$$ Calculate the rate constant if the reaction is first order in $$\mathrm{A}$$ and zeroth order in $$\mathrm{B}$$. [Given $$[\mathrm{A}]=[\mathrm{B}]=0.3 \mathrm{M}]$$