Calculate $$\mathrm{E}_{\text {cell }}^0$$ for $$\mathrm{Cd}_{(\mathrm{s})}\left|\mathrm{Cd}_{(\mathrm{1M})}^{++}\right|\left|\mathrm{Ag}_{(\mathrm{1M})}^{+}\right| \mathrm{Ag}_{(\mathrm{s})}$$.
$$\left[\mathrm{E}_{\mathrm{Cd}}^0=-0.403 \mathrm{~V} ; \mathrm{E}_{\mathrm{Ag}}^0=0.799 \mathrm{~V}\right.\text {]}$$
Which from following expressions is used to find the cell potential of $$\mathrm{Cd}_{(\mathrm{s})}\left|\mathrm{Cd}_{(\mathrm{aq})}^{++}\right|\left|\mathrm{Cu}_{(\mathrm{aq})}^{+}\right| \mathrm{Cu}_{(\mathrm{s})}$$ cell at $$25^{\circ} \mathrm{C}$$ ?
Which from following is NOT true about voltaic cell?
Calculate molar conductivity of $$\mathrm{NH}_4 \mathrm{OH}$$ at infinite dilution if molar conductivities of $$\mathrm{Ba}(\mathrm{OH})_2$$ $$\mathrm{BaCl}_2$$ and $$\mathrm{NH}_4 \mathrm{Cl}$$ at infinite dilution are $$520,280,129 \Omega^{-1} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$$ respectively.