Calculate Henry's law constant if solubility of gas in water at $25^{\circ} \mathrm{C}$ is $5.14 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ and partial pressure of the gas is 0.75 bar above solution.
A solution of nonvolatile solute is obtained by dissolving 0.8 g in $0.3 \mathrm{dm}^3$ water has osmotic pressure 0.2 atm at 300 K . Calculate the molar mass of solute.
$$\left[\mathrm{R}=0.082 \mathrm{~atm} \mathrm{dm}^3 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$$
In a solution, mole fraction of solute is 0.2 , when lowering in vapour pressure is 10 mm Hg . To get lowering of vapour pressure of 20 mm Hg , mole fraction of solute in solution is
Which of the following solutions will not show flow of solvent in either direction when separated by semipermeable membrane?