1
AIPMT 2004
MCQ (Single Correct Answer)
+4
-1
The solubility product of a sparingly soluble salt AX2 is 3.2 $$ \times $$ 10$$-$$11. Its solubility (in moles/L) is
A
5.6 $$ \times $$ 10$$-$$6
B
3.1 $$ \times $$ 10$$-$$4
C
2 $$ \times $$ 10$$-$$4
D
4 $$ \times $$ 10$$-$$4
2
AIPMT 2004
MCQ (Single Correct Answer)
+4
-1
The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In$$-$$) forms of the indicator by the expression
A
$$\log {{\left[ {I{n^ - }} \right]} \over {\left[ {HIn} \right]}} = p{K_{In}} - pH$$
B
$$\log {{\left[ {HIn} \right]} \over {\left[ {I{n^ - }} \right]}} = p{K_{In}} - pH$$
C
$$\log {{\left[ {HIn} \right]} \over {\left[ {I{n^ - }} \right]}} = pH - p{K_{In}}$$
D
$$\log {{\left[ {I{n^ - }} \right]} \over {\left[ {HIn} \right]}} = pH - p{K_{In}}$$
3
AIPMT 2003
MCQ (Single Correct Answer)
+4
-1
The solubility product of AgI at 25oC is 1.0 $$ \times $$ 10$$-$$16 mol2 L$$-$$2. The solubility of AgI in 10$$-$$4 N solution of KI at 25oC is approximately (in mol L$$-$$1
A
1.0 $$ \times $$ 10$$-$$16
B
1.0 $$ \times $$ 10$$-$$12
C
1.0 $$ \times $$ 10$$-$$10
D
1.0 $$ \times $$ 10$$-$$8
4
AIPMT 2002
MCQ (Single Correct Answer)
+4
-1
Solubility of MX2 type electrolytes is 0.5 $$ \times $$ 10$$-$$4 mole/lit., then find out Ksp of electrolytes.
A
5 $$ \times $$ 10$$-$$12
B
25 $$ \times $$ 10$$-$$10
C
1 $$ \times $$ 10$$-$$13
D
5 $$ \times $$ 10$$-$$13
NEET Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12