1
NEET 2025
MCQ (Single Correct Answer)
+4
-1

To an ac power supply of 220 V at 50 Hz , a resistor of $20 \Omega$, a capacitor of reactance $25 \Omega$ and an inductor of reactance $45 \Omega$ are connected in series. The corresponding current in the circuit and the phase angle between the current and the voltage is, respectively

A
15.6 A and $30^{\circ}$
B
15.6 A and $45^{\circ}$
C
7.8 A and $30^{\circ}$
D
7.8 A and $45^{\circ}$
2
NEET 2024 (Re-Examination)
MCQ (Single Correct Answer)
+4
-1
Change Language

In the circuit shown below, the inductance $$L$$ is connected to an ac source. The current flowing in the circuit is $$I=I_0 \sin \omega t$$. The voltage drop $$\left(V_L\right)$$ across $$L$$ is

NEET 2024 (Re-Examination) Physics - Alternating Current Question 2 English

A
$$\omega L I_0 \sin \omega t$$
B
$$\frac{I_0}{\omega L} \sin \omega t$$
C
$$\frac{I_0}{\omega L} \cos \omega t$$
D
$$\omega L I_0 \cos \omega t$$
3
NEET 2024 (Re-Examination)
MCQ (Single Correct Answer)
+4
-1
Change Language

A step up transformer is connected to an ac mains supply of $$220 \mathrm{~V}$$ to operate at $$11000 \mathrm{~V}, 88$$ watt. The current in the secondary circuit, ignoring the power loss in the transformer, is

A
8 mA
B
4 mA
C
0.4 A
D
4 A
4
NEET 2024 (Re-Examination)
MCQ (Single Correct Answer)
+4
-1
Change Language

The amplitude of the charge oscillating in a circuit decreases exponentially as $$Q=Q_0 e^{-R t/2 L}$$, where $$Q_0$$ is the charge at $$t=0 \mathrm{~s}$$. The time at which charge amplitude decreases to $$0.50 Q_0$$ is nearly:

[Given that $$R=1.5 \Omega, L=12 \mathrm{~mH}, \ln (2)=0.693$$]

A
19.01 ms
B
11.09 ms
C
19.01 s
D
11.09 s
NEET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12