1
NEET 2016 Phase 2
MCQ (Single Correct Answer)
+4
-1
Electrons of mass m with de-Broglie wavelength $$\lambda $$ fall on the target in an X-ray tube. The cutoff wavelength ($$\lambda $$0) of the emitted X-ray is
A
$$\lambda $$0 = $${{2mc{\lambda ^2}} \over h}$$
B
$${\lambda _0} = {{2h} \over {mc}}$$
C
$${\lambda _0} = {{2{m^2}{c^2}{\lambda ^3}} \over {{h^2}}}$$
D
$${\lambda _0} = \lambda $$
2
NEET 2016 Phase 1
MCQ (Single Correct Answer)
+4
-1
When a metallic surface is illuminated with radiation of wavelength $$\lambda $$, the stopping potential is V. If the same surface is illuminated with radiation of wavelength 2 $$\lambda $$, the stopping potential is $${V \over 4}$$. The threshold wavelength for the metallic surface is
A
$${5 \over 2}\lambda $$
B
3$$\lambda $$
C
4$$\lambda $$
D
5$$\lambda $$
3
NEET 2016 Phase 1
MCQ (Single Correct Answer)
+4
-1
An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is
A
$$c{\left( {2mE} \right)^{{1 \over 2}}}$$
B
$${1 \over c}{\left( {{{2m} \over E}} \right)^{{1 \over 2}}}$$
C
$${1 \over c}{\left( {{E \over {2m}}} \right)^{{1 \over 2}}}$$
D
$${\left( {{E \over {2m}}} \right)^{{1 \over 2}}}$$
4
AIPMT 2015
MCQ (Single Correct Answer)
+4
-1
Light of wavelength 500 nm is incifent on a metal with work function 2.28 eV. The de Broglie wavelength of the emitted electron is
A
$$ \ge $$ 2.8 $$ \times $$ 10$$-$$9 m
B
$$ \le $$ 2.8 $$ \times $$ 10$$-$$12 m
C
< 2.8 $$ \times $$ 10$$-$$10 m
D
< 2.8 $$ \times $$ 10$$-$$9 m
NEET Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12