1
NEET 2016 Phase 1
+4
-1
A particle of mass 10 g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic enegy of the particle becomes equal to 8 $$\times$$ 10$$-$$4 J by the end of the second revoluation after the beginning of the motion ?
A
0.18 m/s2
B
0.2 m/s2
C
0.1 m/s2
D
0.15 m/s2
2
NEET 2016 Phase 1
+4
-1
A body of mass 1 kg begins to move under the action of a time dependent force $$\overrightarrow F = \left( {2t\widehat i + 3{t^2}\widehat J} \right)N,$$ where $${\widehat i}$$ and $${\widehat j}$$ are unit vectors along x and y axis. What power will be developed by the force at the time t ?
A
(2t3 + 3t4) W
B
(2t3 + 3t5) W
C
(2t2 + 3t3) W
D
(2t2 + 4t4) W
3
NEET 2016 Phase 1
+4
-1
What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?
A
$$\sqrt {3gR}$$
B
$$\sqrt {5gR}$$
C
$$\sqrt {gR}$$
D
$$\sqrt {2gR}$$
4
AIPMT 2015
+4
-1
Two particles A and B, move with constant velocities $$\overrightarrow {{v_1}}$$ and $$\overrightarrow {{v_2}}$$. At the initial moment their position vectors are $$\overrightarrow {{r_1}}$$ and $$\overrightarrow {{r_2}}$$ respectively. The condition for particles A and B for their collision is
A
$${\overrightarrow r _1} \times {\overrightarrow v _1} = {\overrightarrow r _2} \times {\overrightarrow v _2}$$
B
$${\overrightarrow r _1} - {\overrightarrow r _2} = {\overrightarrow v _1} - {\overrightarrow v _2}$$
C
$${{{{\overrightarrow r }_1} - {{\overrightarrow r }_2}} \over {\left| {{{\overrightarrow r }_1} - {{\overrightarrow r }_2}} \right|}} = {{{{\overrightarrow v }_2} - {{\overrightarrow v }_1}} \over {\left| {{{\overrightarrow v }_2} - {{\overrightarrow v }_1}} \right|}}$$
D
$${\overrightarrow r _1}.{\overrightarrow v _1} = {\overrightarrow r _2}.{\overrightarrow v _2}$$
EXAM MAP
Medical
NEET