1
COMEDK 2024 Evening Shift
+1
-0

The sum of the order and degree of the differential equation $$\left(\frac{d^2 y}{d x^2}\right)^5+\frac{4\left(\frac{d^2 y}{d x^2}\right)^3}{\left(\frac{d^3 y}{d x^3}\right)}+\frac{d^3 y}{d x^3}=x^2-1$$ is

A
4
B
5
C
6
D
8
2
COMEDK 2024 Evening Shift
+1
-0

$$\text { If } \frac{d y}{d x}=y+3>0 \text { and } y(0)=2 \text { then } y(\log 2) \text { is equal to }$$

A
5
B
13
C
$$-$$2
D
7
3
COMEDK 2024 Morning Shift
+1
-0

The particular solution of $$\frac{d y}{d x}+\sqrt{\frac{1-y^2}{1-x^2}}=0$$, when $$x=0, y=\frac{1}{2}$$ is

A
$$\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{6}$$
B
$$\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$$
C
$$\sin ^{-1} x-\sin ^{-1} y=\frac{\pi}{2}$$
D
$$\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{3}$$
4
COMEDK 2024 Morning Shift
+1
-0

The particular solution of the differential equation $$\cos x \frac{d y}{d x}+y=\sin x$$ at $$y(0)=1$$

A
$$y(\sec x+\tan x)=\sec x+\tan x-x+1$$
B
$$y(\sec x+\tan x)=\sec x+\tan x-x$$
C
$$y(\sec x+\tan x)=\sec x+\tan x+x$$
D
$$y(\sec x+\tan x)=\sec x+\tan x-x+2$$
EXAM MAP
Medical
NEET