1
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a x^2+b x+c=0$$, then $$\lim _\limits{x \rightarrow \alpha} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\alpha)^2}$$ is equal to

A
$$ \frac{a^2(\alpha-\beta)^2}{2} $$
B
$$ \frac{(\alpha-\beta)^2}{2} $$
C
$$ \frac{-a^2(\alpha-\beta)^2}{2} $$
D
0
2
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { The value of } \lim _\limits{x \rightarrow 1} \frac{x^{15}-1}{x^{10}-1}= $$

A
$$\frac{2}{3}$$
B
1
C
$$\frac{3}{2}$$
D
Does not exist
3
COMEDK 2024 Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { If } f(x)=\left\{\begin{array}{cc} x & , \quad 0 \leq x \leq 1 \\ 2 x-1 & , \quad x>1 \end{array}\right. \text { then } $$

A
$$f$$ is not continuous but differentiable at $$x=1$$
B
$$f$$ is differentiable at $$x=1$$
C
$$f$$ is continuous but not differentiable at $$x=1$$
D
$$f$$ is discontinuous at $$x=1$$
4
COMEDK 2024 Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$ \text { If } f(x)=\left\{\begin{array}{cc} \frac{1-\sin x}{(\pi-2 x)^2} & , \quad \text { if } x \neq \frac{\pi}{2} \\ \lambda, & \text { if } x=\frac{\pi}{2} \end{array}\right. $$

Then $$f(x)$$ will be continues function at $$x=\frac{\pi}{2}$$, then $$\lambda=$$

A
$$-\frac{1}{8}$$
B
1
C
$$\frac{1}{4}$$
D
$$\frac{1}{8}$$
COMEDK Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12