1
COMEDK 2025 Afternoon Shift
MCQ (Single Correct Answer)
+1
-0
$\lim _\limits{x \rightarrow 1} \frac{(\sqrt{x}-1)(2 x-3)}{2 x^2+x-3}$ is
A
$\frac{1}{10}$
B
0
C
1
D
$-\frac{1}{10}$
2
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
Find the value of $\lim\limits_{h \rightarrow 0} \frac{(a+h)^2 \sin (a+h)-a^2 \sin a}{h}$
A
$-a^2 \sin a$
B
0
C
1
D
$a^2 \cos a+2 a \sin a$
3
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
The value of $\lim _\limits{x \rightarrow 0} \frac{(1-x)^n-1}{x}=$
A
n
B
0
C
$-$n
D
1
4
COMEDK 2025 Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $f(x)=\left\{\begin{array}{ll}\frac{1-x^m}{1-x} & \text { if } x \neq 1 \\ 2 m-1 & \text { if } x=1\end{array}\right.$ and the function is discontinuous at $x=1$, then
A
$m=1$
B
$m \neq \frac{1}{2}$
C
$m=\frac{1}{2}$
D
$m \neq 1$
COMEDK Subjects
EXAM MAP