For the reaction,
$$\mathrm{CH}_3 \mathrm{Br}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \longrightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{aq})}+\mathrm{Br}_{(\mathrm{aq})}^{-}$$
rate of consumption of $\mathrm{OH}_{(\mathrm{aq})}^{-}$is $\mathrm{x} \mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$ What is the rate of formation of $\mathrm{Br}_{(9 q)}^{-}$?
For the reaction,
$$\mathrm{H}_{2(g)}+\mathrm{Br}_{2(8)} \longrightarrow 2 \mathrm{HBr}_{(\mathrm{g})}, \mathrm{r}=\mathrm{k}\left[\mathrm{H}_2\right]\left[\mathrm{Br}_2\right]^{\frac{1}{2}}$$
What is the molecularity and order of reaction respectively?
Which of the following is true for a reaction as per coliision theory?
Rate of reaction, $\mathrm{A}+\mathrm{B} \rightarrow$ product, is $7.2 \times 10^{-2} \mathrm{moldm}^{-3} \mathrm{~s}^{-1}$ at $[\mathrm{A}]=0.4 \mathrm{~mol} \mathrm{dm}^{-3}$ and $[B]=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$. The reaction is first order in A and second order in B. Calculate rate constant.