For the reaction, $\mathrm{N}_{2(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{g})}$ $\mathrm{NH}_3$ is formed at a rate of $0.088 \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$. Calculate consumption rate of $\mathrm{N}_{2(\mathrm{g})}$.
Consider the reaction $3 \mathrm{I}^{-}+\mathrm{S}_2 \mathrm{O}_8^{2-} \longrightarrow \mathrm{I}_3^{-}+2 \mathrm{SO}_4^{2-}$, at a particular time t , $\frac{\mathrm{d}\left[\mathrm{SO}_4^{2-}\right]}{\mathrm{dt}}$ is $2.2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$. What is the value of $\frac{\mathrm{d}\left[\mathrm{S}_2 \mathrm{O}_8^{2-}\right]}{\mathrm{dt}}$ ?
For the reaction, $\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \longrightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}$ rate of reaction is proportional to square of $\left[\mathrm{NO}_2\right]$ and independent of [CO]. What is the rate law equation?
Find the percentage of unreacted reactant for zero order reaction in 90 second having rate constant $1 \mathrm{~mol} \mathrm{~dm}^{-3} \mathrm{~s}^{-1}$.