1
MHT CET 2021 24th September Morning Shift
+1
-0

For the reaction $$\mathrm{A}+\mathrm{B} \rightarrow$$ product, rate of reaction is $$3.6 \times 10^{-2} \mathrm{mol~dm}^{-3} \mathrm{sec}^{-1}$$. When $$[\mathrm{A}]=0.2 \mathrm{~mol} \mathrm{dm}^{-3}$$ and $$[\mathrm{B}]=0.1 \mathrm{~mol} \mathrm{~dm}^{-3}$$, find rate constant of reaction if it is second order with respective to both reactants.

A
$$18 \mathrm{~mol}^{-3} \mathrm{dm}^9 \mathrm{sec}^{-1}$$
B
$$90 \mathrm{~mol}^{-3} \mathrm{dm}^9 \mathrm{sec}^{-1}$$
C
$$72 \mathrm{~mol}^{-3} \mathrm{dm}^9 \mathrm{sec}^{-1}$$
D
$$36 \mathrm{~mol}^{-3} \mathrm{~dm}^9 \mathrm{sec}^{-1}$$
2
MHT CET 2021 23rd September Evening Shift
+1
-0

Which of the following equations represents integrated rate law for zero order reaction?

A
$$k=\frac{[\mathrm{A}]_{\mathrm{t}}-[\mathrm{A}]_0}{\mathrm{t}}$$
B
$$\mathrm{k}=\frac{1}{\mathrm{t}} \log _{10} \frac{[\mathrm{A}]_0}{[\mathrm{~A}]_{\mathrm{t}}}$$
C
$$k=\frac{[\mathrm{A}]_0-[\mathrm{A}]_1}{\mathrm{t}}$$
D
$$k=\frac{t}{2.303} \times \log _{10} \frac{[\mathrm{A}]_0}{[\mathrm{~A}]_{\mathrm{t}}}$$
3
MHT CET 2021 23rd September Evening Shift
+1
-0

Ammonia and oxygen react at high temperature as

$$4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_2 \mathrm{O}_{(\mathrm{g})} \text {. }$$

If rate of formation of $$\mathrm{NO}_{(\mathrm{g})}$$ is $$3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$ then rate of disappearance of ammonia is

A
$$7.2 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$
B
$$1.2 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$
C
$$2.4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$
D
$$3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$
4
MHT CET 2021 23rd September Evening Shift
+1
-0

Which of the following represents integrated rate law equation for gas phase first order reaction, $$\mathrm{A}_{(\mathrm{g})} \rightarrow \mathrm{B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}$$

if $$\mathrm{P}_{\mathrm{i}}=$$ initial pressure of $$\mathrm{A}$$

$$\quad\mathrm{P}=$$ total pressure of reaction mixture at time ?

A
$$\mathrm{k}=2.303 \times \log _{10} \frac{\mathrm{P}_{\mathrm{i}}}{2 \mathrm{P}_{\mathrm{i}}-\mathrm{P}}$$
B
$$\mathrm{k}=\frac{2.303}{\mathrm{t}} \times \log _{10} \frac{\mathrm{P}_{\mathrm{i}}}{2 \mathrm{P}_{\mathrm{i}}-\mathrm{P}}$$
C
$$\mathrm{k}=\frac{1}{\mathrm{t}} \ln \frac{2 \mathrm{P}_{\mathrm{i}}-\mathrm{P}}{\mathrm{P}_{\mathrm{i}}}$$
D
$$\mathrm{k=\frac{2.303}{t} \times \log _{10} \frac{P_i-P}{P_i}}$$
EXAM MAP
Medical
NEET