For the reaction $$\mathrm{A}+\mathrm{B} \rightarrow$$ product, rate of reaction is $$3.6 \times 10^{-2} \mathrm{mol~dm}^{-3} \mathrm{sec}^{-1}$$. When $$[\mathrm{A}]=0.2 \mathrm{~mol} \mathrm{dm}^{-3}$$ and $$[\mathrm{B}]=0.1 \mathrm{~mol} \mathrm{~dm}^{-3}$$, find rate constant of reaction if it is second order with respective to both reactants.
Which of the following equations represents integrated rate law for zero order reaction?
Ammonia and oxygen react at high temperature as
$$4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_2 \mathrm{O}_{(\mathrm{g})} \text {. }$$
If rate of formation of $$\mathrm{NO}_{(\mathrm{g})}$$ is $$3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$$ then rate of disappearance of ammonia is
Which of the following represents integrated rate law equation for gas phase first order reaction, $$\mathrm{A}_{(\mathrm{g})} \rightarrow \mathrm{B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}$$
if $$\mathrm{P}_{\mathrm{i}}=$$ initial pressure of $$\mathrm{A}$$
$$\quad\mathrm{P}=$$ total pressure of reaction mixture at time ?