1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+1
-0

A first order reaction has rate constant $$1 \times 10^{-2} \mathrm{~s}^{-1}$$. What time will, it take for $$20 \mathrm{~g}$$ or reactant to reduce to $$5 \mathrm{~g}$$ ?

A
693.0 s
B
138.6 s
C
238.6 s
D
346.5 s
2
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The integrated rate equation for first order reaction, $A \rightarrow$ product, is

A
$k=\frac{1}{t} \ln \frac{[A]_t}{[A]_0}$
B
$k=\frac{2303}{t}+\log _{10} \frac{[A]_0}{[A]_t}$
C
$k=-\frac{1}{t} \ln \frac{[A]_t}{[A]_0}$
D
$k=2303 t \log _{10} \frac{[A]_0}{[A]_t}$
3
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

For the elementary reaction, $3 \mathrm{H}_2(g)+\mathrm{N}_2(g) \longrightarrow 2 \mathrm{NH}_3(g)$ identify the correct relation among the following relations:

A
$\frac{-3}{2} \frac{d\left[\mathrm{H}_2(\mathrm{~g})\right]}{d t}=\frac{d\left[\mathrm{NH}_3(\mathrm{~g})\right]}{d t}$
B
$\frac{-2}{3} \frac{d\left[\mathrm{H}_2(\mathrm{~g})\right]}{d t}=\frac{d\left[\mathrm{NH}_3(\mathrm{~g})\right]}{\mathrm{dt}}$
C
$\frac{d\left[\mathrm{NH}_3(g)\right]}{d t}=\frac{-1}{3} \frac{d\left[H_2(g)\right]}{d t}$
D
$\frac{-d\left[H_2(g)\right]}{d t}=\frac{d\left[\mathrm{NH}_3(g)\right]}{d t}$
4
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The activation energy of a reaction is zero. Its rate constant at 280 K is $1.6 \times 10^{-6} \mathrm{~s}^{-1}$, the rate constant at 300 K is

A
$3.2 \times 10^{-6} \mathrm{~s}^{-1}$
B
zero
C
$1.6 \times 10^{-6} \mathrm{~s}^{-1}$
D
$1.6 \times 10^{-5} \mathrm{~s}^{-1}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12